The eigenvector-eigenvalue identity, formally named by Peter B. Denton, Stephen J. Parker, Terence Tao, Xining Zhang [Bull. Math. Amer. Soc., 2021], which is a basic and important identity in linear commutative algebra. In this paper, we extend the eigenvector-eigenvalue identity to the quaternion division ring, which is non-commutative. A version of eigenvector-eigenvalue identity for the quaternion matrix is established. Furthermore, we give a new method and algorithm to compute the eigenvectors from the right eigenvalues for the quaternion Hermitian matrix. A program is designed to realize the algorithm to compute the eigenvectors. An open problem ends the paper. Some examples show a good performance of the algorithm and the program.
Information-directed sampling (IDS) has recently demonstrated its potential as a data-efficient reinforcement learning algorithm. However, it is still unclear what is the right form of information ratio to optimize when contextual information is available. We investigate the IDS design through two contextual bandit problems: contextual bandits with graph feedback and sparse linear contextual bandits. We provably demonstrate the advantage of contextual IDS over conditional IDS and emphasize the importance of considering the context distribution. The main message is that an intelligent agent should invest more on the actions that are beneficial for the future unseen contexts while the conditional IDS can be myopic. We further propose a computationally-efficient version of contextual IDS based on Actor-Critic and evaluate it empirically on a neural network contextual bandit.
This paper studies inference in randomized controlled trials with multiple treatments, where treatment status is determined according to a "matched tuples" design. Here, by a matched tuples design, we mean an experimental design where units are sampled i.i.d. from the population of interest, grouped into "homogeneous" blocks with cardinality equal to the number of treatments, and finally, within each block, each treatment is assigned exactly once uniformly at random. We first study estimation and inference for matched tuples designs in the general setting where the parameter of interest is a vector of linear contrasts over the collection of average potential outcomes for each treatment. Parameters of this form include but are not limited to standard average treatment effects used to compare one treatment relative to another. We first establish conditions under which a sample analogue estimator is asymptotically normal and construct a consistent estimator of its corresponding asymptotic variance. Combining these results establishes the asymptotic validity of tests based on these estimators. In contrast, we show that a common testing procedure based on a linear regression with block fixed effects and the usual heteroskedasticity-robust variance estimator is invalid in the sense that the resulting test may have a limiting rejection probability under the null hypothesis strictly greater than the nominal level. We then apply our results to study the asymptotic properties of what we call "fully-blocked" $2^K$ factorial designs, which are simply matched tuples designs applied to a full factorial experiment. Leveraging our previous results, we establish that our estimator achieves a lower asymptotic variance under the fully-blocked design than that under any stratified factorial design. A simulation study and empirical application illustrate the practical relevance of our results.
Many innovative applications require establishing correspondences among 3D geometric objects. However, the countless possible deformations of smooth surfaces make shape matching a challenging task. Finding an embedding to represent the different shapes in high-dimensional space where the matching is easier to solve is a well-trodden path that has given many outstanding solutions. Recently, a new trend has shown advantages in learning such representations. This novel idea motivated us to investigate which properties differentiate these data-driven embeddings and which ones promote state-of-the-art results. In this study, we analyze, for the first time, properties that arise in data-driven learned embedding and their relation to the shape-matching task. Our discoveries highlight the close link between matching and smoothness, which naturally emerge from training. Also, we demonstrate the relation between the orthogonality of the embedding and the bijectivity of the correspondence. Our experiments show exciting results, overcoming well-established alternatives and shedding a different light on relevant contexts and properties for learned embeddings.
Factorization of matrices where the rank of the two factors diverges linearly with their sizes has many applications in diverse areas such as unsupervised representation learning, dictionary learning or sparse coding. We consider a setting where the two factors are generated from known component-wise independent prior distributions, and the statistician observes a (possibly noisy) component-wise function of their matrix product. In the limit where the dimensions of the matrices tend to infinity, but their ratios remain fixed, we expect to be able to derive closed form expressions for the optimal mean squared error on the estimation of the two factors. However, this remains a very involved mathematical and algorithmic problem. A related, but simpler, problem is extensive-rank matrix denoising, where one aims to reconstruct a matrix with extensive but usually small rank from noisy measurements. In this paper, we approach both these problems using high-temperature expansions at fixed order parameters. This allows to clarify how previous attempts at solving these problems failed at finding an asymptotically exact solution. We provide a systematic way to derive the corrections to these existing approximations, taking into account the structure of correlations particular to the problem. Finally, we illustrate our approach in detail on the case of extensive-rank matrix denoising. We compare our results with known optimal rotationally-invariant estimators, and show how exact asymptotic calculations of the minimal error can be performed using extensive-rank matrix integrals.
Exponential generalization bounds with near-tight rates have recently been established for uniformly stable learning algorithms. The notion of uniform stability, however, is stringent in the sense that it is invariant to the data-generating distribution. Under the weaker and distribution dependent notions of stability such as hypothesis stability and $L_2$-stability, the literature suggests that only polynomial generalization bounds are possible in general cases. The present paper addresses this long standing tension between these two regimes of results and makes progress towards relaxing it inside a classic framework of confidence-boosting. To this end, we first establish an in-expectation first moment generalization error bound for potentially randomized learning algorithms with $L_2$-stability, based on which we then show that a properly designed subbagging process leads to near-tight exponential generalization bounds over the randomness of both data and algorithm. We further substantialize these generic results to stochastic gradient descent (SGD) to derive improved high-probability generalization bounds for convex or non-convex optimization problems with natural time decaying learning rates, which have not been possible to prove with the existing hypothesis stability or uniform stability based results.
Using newly developed ${\bf H}(\mathrm{curl}^2)$ conforming elements, we solve the Maxwell's transmission eigenvalue problem. Both real and complex eigenvalues are considered. Based on the fixed-point weak formulation with reasonable assumptions, the optimal error estimates for numerical eigenvalues and eigenfunctions (in the ${\bf H}(\mathrm{curl}^2)$-norm and ${\bf H}(\mathrm{curl})$-semi-norm) are established.
This paper analyzes a two-timescale stochastic algorithm framework for bilevel optimization. Bilevel optimization is a class of problems which exhibit a two-level structure, and its goal is to minimize an outer objective function with variables which are constrained to be the optimal solution to an (inner) optimization problem. We consider the case when the inner problem is unconstrained and strongly convex, while the outer problem is constrained and has a smooth objective function. We propose a two-timescale stochastic approximation (TTSA) algorithm for tackling such a bilevel problem. In the algorithm, a stochastic gradient update with a larger step size is used for the inner problem, while a projected stochastic gradient update with a smaller step size is used for the outer problem. We analyze the convergence rates for the TTSA algorithm under various settings: when the outer problem is strongly convex (resp.~weakly convex), the TTSA algorithm finds an $\mathcal{O}(K^{-2/3})$-optimal (resp.~$\mathcal{O}(K^{-2/5})$-stationary) solution, where $K$ is the total iteration number. As an application, we show that a two-timescale natural actor-critic proximal policy optimization algorithm can be viewed as a special case of our TTSA framework. Importantly, the natural actor-critic algorithm is shown to converge at a rate of $\mathcal{O}(K^{-1/4})$ in terms of the gap in expected discounted reward compared to a global optimal policy.
Neural networks with the Rectified Linear Unit (ReLU) nonlinearity are described by a vector of parameters $\theta$, and realized as a piecewise linear continuous function $R_{\theta}: x \in \mathbb R^{d} \mapsto R_{\theta}(x) \in \mathbb R^{k}$. Natural scalings and permutations operations on the parameters $\theta$ leave the realization unchanged, leading to equivalence classes of parameters that yield the same realization. These considerations in turn lead to the notion of identifiability -- the ability to recover (the equivalence class of) $\theta$ from the sole knowledge of its realization $R_{\theta}$. The overall objective of this paper is to introduce an embedding for ReLU neural networks of any depth, $\Phi(\theta)$, that is invariant to scalings and that provides a locally linear parameterization of the realization of the network. Leveraging these two key properties, we derive some conditions under which a deep ReLU network is indeed locally identifiable from the knowledge of the realization on a finite set of samples $x_{i} \in \mathbb R^{d}$. We study the shallow case in more depth, establishing necessary and sufficient conditions for the network to be identifiable from a bounded subset $\mathcal X \subseteq \mathbb R^{d}$.
In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.
The area of Data Analytics on graphs promises a paradigm shift as we approach information processing of classes of data, which are typically acquired on irregular but structured domains (social networks, various ad-hoc sensor networks). Yet, despite its long history, current approaches mostly focus on the optimization of graphs themselves, rather than on directly inferring learning strategies, such as detection, estimation, statistical and probabilistic inference, clustering and separation from signals and data acquired on graphs. To fill this void, we first revisit graph topologies from a Data Analytics point of view, and establish a taxonomy of graph networks through a linear algebraic formalism of graph topology (vertices, connections, directivity). This serves as a basis for spectral analysis of graphs, whereby the eigenvalues and eigenvectors of graph Laplacian and adjacency matrices are shown to convey physical meaning related to both graph topology and higher-order graph properties, such as cuts, walks, paths, and neighborhoods. Next, to illustrate estimation strategies performed on graph signals, spectral analysis of graphs is introduced through eigenanalysis of mathematical descriptors of graphs and in a generic way. Finally, a framework for vertex clustering and graph segmentation is established based on graph spectral representation (eigenanalysis) which illustrates the power of graphs in various data association tasks. The supporting examples demonstrate the promise of Graph Data Analytics in modeling structural and functional/semantic inferences. At the same time, Part I serves as a basis for Part II and Part III which deal with theory, methods and applications of processing Data on Graphs and Graph Topology Learning from data.