亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Ensemble modeling has been widely used to solve complex problems as it helps to improve overall performance and generalization. In this paper, we propose a novel TemporalAugmenter approach based on ensemble modeling for augmenting the temporal information capturing for long-term and short-term dependencies in data integration of two variations of recurrent neural networks in two learning streams to obtain the maximum possible temporal extraction. Thus, the proposed model augments the extraction of temporal dependencies. In addition, the proposed approach reduces the preprocessing and prior stages of feature extraction, which reduces the required energy to process the models built upon the proposed TemporalAugmenter approach, contributing towards green AI. Moreover, the proposed model can be simply integrated into various domains including industrial, medical, and human-computer interaction applications. Our proposed approach empirically evaluated the speech emotion recognition, electrocardiogram signal, and signal quality examination tasks as three different signals with varying complexity and different temporal dependency features.

相關內容

Single-frame infrared small target detection is considered to be a challenging task, due to the extreme imbalance between target and background, bounding box regression is extremely sensitive to infrared small target, and target information is easy to lose in the high-level semantic layer. In this article, we propose an enhancing feature learning network (EFLNet) to address these problems. First, we notice that there is an extremely imbalance between the target and the background in the infrared image, which makes the model pay more attention to the background features rather than target features. To address this problem, we propose a new adaptive threshold focal loss (ATFL) function that decouples the target and the background, and utilizes the adaptive mechanism to adjust the loss weight to force the model to allocate more attention to target features. Second, we introduce the normalized Gaussian Wasserstein distance (NWD) to alleviate the difficulty of convergence caused by the extreme sensitivity of the bounding box regression to infrared small target. Finally, we incorporate a dynamic head mechanism into the network to enable adaptive learning of the relative importance of each semantic layer. Experimental results demonstrate our method can achieve better performance in the detection performance of infrared small target compared to the state-of-the-art (SOTA) deep-learning-based methods. The source codes and bounding box annotated datasets are available at //github.com/YangBo0411/infrared-small-target.

The field of swarm robotics has attracted considerable interest for its capacity to complete intricate and synchronized tasks. Existing methodologies for motion planning within swarm robotic systems mainly encounter difficulties in scalability and safety guarantee. To address these two limitations, we propose a Risk-aware swarm mOtion planner using conditional ValuE at Risk (ROVER) that systematically modulates the safety and conservativeness and navigates the swarm to the target area through cluttered environments. Our approach formulates a finite-time model predictive control (FTMPC) problem predicated upon the macroscopic state of the robot swarm represented by Gaussian Mixture Model (GMM) and integrates conditional value-at-risk (CVaR) to avoid collision. We leverage the linearized Signed Distance Function for the efficient computation of CVaR concerning the proximity between the robot swarm to obstacles. The key component of this method is implementing CVaR constraint under GMM uncertainty in the FTMPC to measure the collision risk that a robot swarm faces. However, the non-convex constrained FTMPC is nontrival to solve. To navigate this complexity, we develop a computationally tractable strategy through 1) an explicit linear approximation of the CVaR constraint; and 2) a sequential quadratic programming formulation. Simulations and comparisons with other approaches demonstrate the effectiveness of the proposed method in flexibility, scalability, and risk mitigation.

The field of general time series analysis has recently begun to explore unified modeling, where a common architectural backbone can be retrained on a specific task for a specific dataset. In this work, we approach unification from a complementary vantage point: unification across tasks and domains. To this end, we explore the impact of discrete, learnt, time series data representations that enable generalist, cross-domain training. Our method, TOTEM, or TOkenized Time Series EMbeddings, proposes a simple tokenizer architecture that embeds time series data from varying domains using a discrete vectorized representation learned in a self-supervised manner. TOTEM works across multiple tasks and domains with minimal to no tuning. We study the efficacy of TOTEM with an extensive evaluation on 17 real world time series datasets across 3 tasks. We evaluate both the specialist (i.e., training a model on each domain) and generalist (i.e., training a single model on many domains) settings, and show that TOTEM matches or outperforms previous best methods on several popular benchmarks. The code can be found at: //github.com/SaberaTalukder/TOTEM.

Speech quality estimation has recently undergone a paradigm shift from human-hearing expert designs to machine-learning models. However, current models rely mainly on supervised learning, which is time-consuming and expensive for label collection. To solve this problem, we propose VQScore, a self-supervised metric for evaluating speech based on the quantization error of a vector-quantized-variational autoencoder (VQ-VAE). The training of VQ-VAE relies on clean speech; hence, large quantization errors can be expected when the speech is distorted. To further improve correlation with real quality scores, domain knowledge of speech processing is incorporated into the model design. We found that the vector quantization mechanism could also be used for self-supervised speech enhancement (SE) model training. To improve the robustness of the encoder for SE, a novel self-distillation mechanism combined with adversarial training is introduced. In summary, the proposed speech quality estimation method and enhancement models require only clean speech for training without any label requirements. Experimental results show that the proposed VQScore and enhancement model are competitive with supervised baselines. The code will be released after publication.

Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.

Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.

The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.

Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.

北京阿比特科技有限公司