We discuss structure-preserving model order reduction for port-Hamiltonian systems based on an approximation of the full-order state by a linear combination of ansatz functions which depend themselves on the state of the reduced-order model. In recent years, such nonlinear approximation ansatzes have gained more and more attention especially due to their effectiveness in the context of model reduction for transport-dominated systems which are challenging for classical linear model reduction techniques. We demonstrate that port-Hamiltonian reduced-order models can often be obtained by a residual minimization approach where a special weighted norm is used for the residual. Moreover, we discuss sufficient conditions for the resulting reduced-order models to be stable. Finally, the methodology is illustrated by means of two transport-dominated numerical test cases, where the ansatz functions are determined based on snapshot data of the full-order state.
Evolutionary differential equation discovery proved to be a tool to obtain equations with less a priori assumptions than conventional approaches, such as sparse symbolic regression over the complete possible terms library. The equation discovery field contains two independent directions. The first one is purely mathematical and concerns differentiation, the object of optimization and its relation to the functional spaces and others. The second one is dedicated purely to the optimizational problem statement. Both topics are worth investigating to improve the algorithm's ability to handle experimental data a more artificial intelligence way, without significant pre-processing and a priori knowledge of their nature. In the paper, we consider the prevalence of either single-objective optimization, which considers only the discrepancy between selected terms in the equation, or multi-objective optimization, which additionally takes into account the complexity of the obtained equation. The proposed comparison approach is shown on classical model examples -- Burgers equation, wave equation, and Korteweg - de Vries equation.
The majority of machine learning methods can be regarded as the minimization of an unavailable risk function. To optimize the latter, given samples provided in a streaming fashion, we define a general stochastic Newton algorithm and its weighted average version. In several use cases, both implementations will be shown not to require the inversion of a Hessian estimate at each iteration, but a direct update of the estimate of the inverse Hessian instead will be favored. This generalizes a trick introduced in [2] for the specific case of logistic regression, by directly updating the estimate of the inverse Hessian. Under mild assumptions such as local strong convexity at the optimum, we establish almost sure convergences and rates of convergence of the algorithms, as well as central limit theorems for the constructed parameter estimates. The unified framework considered in this paper covers the case of linear, logistic or softmax regressions to name a few. Numerical experiments on simulated data give the empirical evidence of the pertinence of the proposed methods, which outperform popular competitors particularly in case of bad initializa-tions.
It is well known that the Euler method for approximating the solutions of a random ordinary differential equation $\mathrm{d}X_t/\mathrm{d}t = f(t, X_t, Y_t)$ driven by a stochastic process $\{Y_t\}_t$ with $\theta$-H\"older sample paths is estimated to be of strong order $\theta$ with respect to the time step, provided $f=f(t, x, y)$ is sufficiently regular and with suitable bounds. Here, it is proved that, in many typical cases, further conditions on the noise can be exploited so that the strong convergence is actually of order 1, regardless of the H\"older regularity of the sample paths. This applies for instance to additive or multiplicative It\^o process noises (such as Wiener, Ornstein-Uhlenbeck, and geometric Brownian motion processes); to point-process noises (such as Poisson point processes and Hawkes self-exciting processes, which even have jump-type discontinuities); and to transport-type processes with sample paths of bounded variation. The result is based on a novel approach, estimating the global error as an iterated integral over both large and small mesh scales, and switching the order of integration to move the critical regularity to the large scale. The work is complemented with numerical simulations illustrating the strong order 1 convergence in those cases, and with an example with fractional Brownian motion noise with Hurst parameter $0 < H < 1/2$ for which the order of convergence is $H + 1/2$, hence lower than the attained order 1 in the examples above, but still higher than the order $H$ of convergence expected from previous works.
Twin revolutions in wearable technologies and smartphone-delivered digital health interventions have significantly expanded the accessibility and uptake of mobile health (mHealth) interventions across various health science domains. Sequentially randomized experiments called micro-randomized trials (MRTs) have grown in popularity to empirically evaluate the effectiveness of these mHealth intervention components. MRTs have given rise to a new class of causal estimands known as "causal excursion effects", which enable health scientists to assess how intervention effectiveness changes over time or is moderated by individual characteristics, context, or responses in the past. However, current data analysis methods for estimating causal excursion effects require pre-specified features of the observed high-dimensional history to construct a working model of an important nuisance parameter. While machine learning algorithms are ideal for automatic feature construction, their naive application to causal excursion estimation can lead to bias under model misspecification, potentially yielding incorrect conclusions about intervention effectiveness. To address this issue, this paper revisits the estimation of causal excursion effects from a meta-learner perspective, where the analyst remains agnostic to the choices of supervised learning algorithms used to estimate nuisance parameters. The paper presents asymptotic properties of the novel estimators and compares them theoretically and through extensive simulation experiments, demonstrating relative efficiency gains and supporting the recommendation for a doubly robust alternative to existing methods. Finally, the practical utility of the proposed methods is demonstrated by analyzing data from a multi-institution cohort of first-year medical residents in the United States (NeCamp et al., 2020).
Due to the nature of pure-tone audiometry test, hearing loss data often has a complicated correlation structure. Generalized estimating equation (GEE) is commonly used to investigate the association between exposures and hearing loss, because it is robust to misspecification of the correlation matrix. However, this robustness typically entails a moderate loss of estimation efficiency in finite samples. This paper proposes to model the correlation coefficients and use second-order generalized estimating equations to estimate the correlation parameters. In simulation studies, we assessed the finite sample performance of our proposed method and compared it with other methods, such as GEE with independent, exchangeable and unstructured correlation structures. Our method achieves an efficiency gain which is larger for the coefficients of the covariates corresponding to the within-cluster variation (e.g., ear-level covariates) than the coefficients of cluster-level covariates. The efficiency gain is also more pronounced when the within-cluster correlations are moderate to strong, or when comparing to GEE with an unstructured correlation structure. As a real-world example, we applied the proposed method to data from the Audiology Assessment Arm of the Conservation of Hearing Study, and studied the association between a dietary adherence score and hearing loss.
The rapid progress of Artificial Intelligence research came with the development of increasingly complex deep learning models, leading to growing challenges in terms of computational complexity, energy efficiency and interpretability. In this study, we apply advanced network-based information filtering techniques to design a novel deep neural network unit characterized by a sparse higher-order graphical architecture built over the homological structure of underlying data. We demonstrate its effectiveness in two application domains which are traditionally challenging for deep learning: tabular data and time series regression problems. Results demonstrate the advantages of this novel design which can tie or overcome the results of state-of-the-art machine learning and deep learning models using only a fraction of parameters.
Separating signals from an additive mixture may be an unnecessarily hard problem when one is only interested in specific properties of a given signal. In this work, we tackle simpler "statistical component separation" problems that focus on recovering a predefined set of statistical descriptors of a target signal from a noisy mixture. Assuming access to samples of the noise process, we investigate a method devised to match the statistics of the solution candidate corrupted by noise samples with those of the observed mixture. We first analyze the behavior of this method using simple examples with analytically tractable calculations. Then, we apply it in an image denoising context employing 1) wavelet-based descriptors, 2) ConvNet-based descriptors on astrophysics and ImageNet data. In the case of 1), we show that our method better recovers the descriptors of the target data than a standard denoising method in most situations. Additionally, despite not constructed for this purpose, it performs surprisingly well in terms of peak signal-to-noise ratio on full signal reconstruction. In comparison, representation 2) appears less suitable for image denoising. Finally, we extend this method by introducing a diffusive stepwise algorithm which gives a new perspective to the initial method and leads to promising results for image denoising under specific circumstances.
We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.