This paper addresses the task of modeling severity losses using segmentation when the data distribution does not fall into the usual regression frameworks. This situation is not uncommon in lines of business such as third-party liability insurance, where heavy-tails and multimodality often hamper a direct statistical analysis. We propose to use regression models based on phase-type distributions, regressing on their underlying inhomogeneous Markov intensity and using an extension of the EM algorithm. These models are interpretable and tractable in terms of multi-state processes and generalize the proportional hazards specification when the dimension of the state space is larger than one. We show that the combination of matrix parameters, inhomogeneity transforms, and covariate information provides flexible regression models that effectively capture the entire distribution of loss severities.
From the sampling of data to the initialisation of parameters, randomness is ubiquitous in modern Machine Learning practice. Understanding the statistical fluctuations engendered by the different sources of randomness in prediction is therefore key to understanding robust generalisation. In this manuscript we develop a quantitative and rigorous theory for the study of fluctuations in an ensemble of generalised linear models trained on different, but correlated, features in high-dimensions. In particular, we provide a complete description of the asymptotic joint distribution of the empirical risk minimiser for generic convex loss and regularisation in the high-dimensional limit. Our result encompasses a rich set of classification and regression tasks, such as the lazy regime of overparametrised neural networks, or equivalently the random features approximation of kernels. While allowing to study directly the mitigating effect of ensembling (or bagging) on the bias-variance decomposition of the test error, our analysis also helps disentangle the contribution of statistical fluctuations, and the singular role played by the interpolation threshold that are at the roots of the "double-descent" phenomenon.
Selective regression allows abstention from prediction if the confidence to make an accurate prediction is not sufficient. In general, by allowing a reject option, one expects the performance of a regression model to increase at the cost of reducing coverage (i.e., by predicting on fewer samples). However, as we show, in some cases, the performance of a minority subgroup can decrease while we reduce the coverage, and thus selective regression can magnify disparities between different sensitive subgroups. Motivated by these disparities, we propose new fairness criteria for selective regression requiring the performance of every subgroup to improve with a decrease in coverage. We prove that if a feature representation satisfies the sufficiency criterion or is calibrated for mean and variance, than the proposed fairness criteria is met. Further, we introduce two approaches to mitigate the performance disparity across subgroups: (a) by regularizing an upper bound of conditional mutual information under a Gaussian assumption and (b) by regularizing a contrastive loss for conditional mean and conditional variance prediction. The effectiveness of these approaches is demonstrated on synthetic and real-world datasets.
Phase-type (PH) distributions are a popular tool for the analysis of univariate risks in numerous actuarial applications. Their multivariate counterparts (MPH$^\ast$), however, have not seen such a proliferation, due to lack of explicit formulas and complicated estimation procedures. A simple construction of multivariate phase-type distributions -- mPH -- is proposed for the parametric description of multivariate risks, leading to models of considerable probabilistic flexibility and statistical tractability. The main idea is to start different Markov processes at the same state, and allow them to evolve independently thereafter, leading to dependent absorption times. By dimension augmentation arguments, this construction can be cast into the umbrella of MPH$^\ast$ class, but enjoys explicit formulas which the general specification lacks, including common measures of dependence. Moreover, it is shown that the class is still rich enough to be dense on the set of multivariate risks supported on the positive orthant, and it is the smallest known sub-class to have this property. In particular, the latter result provides a new short proof of the denseness of the MPH$^\ast$ class. In practice this means that the mPH class allows for modeling of bivariate risks with any given correlation or copula. We derive an EM algorithm for its statistical estimation, and illustrate it on bivariate insurance data. Extensions to more general settings are outlined.
In this paper we propose a new methodology for testing the parametric forms of the mean and variance functions based on weighted residual empirical processes and their martingale transformations in regression models. The dimensions of the parameter vectors can be divergent as the sample size goes to infinity. We then study the convergence of weighted residual empirical processes and their martingale transformation under the null and alternative hypotheses in the diverging dimension setting. The proposed tests based on weighted residual empirical processes can detect local alternatives distinct from the null at the fastest possible rate of order $n^{-1/2}$ but are not asymptotically distribution-free. While the tests based on martingale transformed weighted residual empirical processes can be asymptotically distribution-free, yet, unexpectedly, can only detect the local alternatives converging to the null at a much slower rate of order $n^{-1/4}$, which is somewhat different from existing asymptotically distribution-free tests based on martingale transformations. As the tests based on the residual empirical process are not distribution-free, we propose a smooth residual bootstrap and verify the validity of its approximation in diverging dimension settings. Simulation studies and a real data example are conducted to illustrate the effectiveness of our tests.
Two-component deterministic- and random-scan Gibbs samplers are studied using the theory of two projections. It is found that in terms of asymptotic variance, the two-component random-scan Gibbs sampler is never much worse, and could be considerably better than its deterministic-scan counterpart, provided that the selection probability is appropriately chosen. This is especially the case when there is a large discrepancy in computation cost between the two components. Together with previous results regarding the convergence rates of two-component Gibbs Markov chains, results herein suggest one may use the deterministic-scan version in the burn-in stage, and switch to the random-scan version in the estimation stage. The theory of two projections can also be utilized to study other properties of variants of two-component Gibbs samplers. As a side product, some general formulas for characterizing the convergence rate of a possibly non-reversible or time-inhomogeneous Markov chain in an operator theoretic framework are developed.
This paper considers the problem of matrix-variate logistic regression. It derives the fundamental error threshold on estimating low-rank coefficient matrices in the logistic regression problem by obtaining a lower bound on the minimax risk. The bound depends explicitly on the dimension and distribution of the covariates, the rank and energy of the coefficient matrix, and the number of samples. The resulting bound is proportional to the intrinsic degrees of freedom in the problem, which suggests the sample complexity of the low-rank matrix logistic regression problem can be lower than that for vectorized logistic regression. The proof techniques utilized in this work also set the stage for development of minimax lower bounds for tensor-variate logistic regression problems.
Penalized $M-$estimators for logistic regression models have been previously study for fixed dimension in order to obtain sparse statistical models and automatic variable selection. In this paper, we derive asymptotic results for penalized $M-$estimators when the dimension $p$ grows to infinity with the sample size $n$. Specifically, we obtain consistency and rates of convergence results, for some choices of the penalty function. Moreover, we prove that these estimators consistently select variables with probability tending to 1 and derive their asymptotic distribution.
The conventional approach to data-driven inversion framework is based on Gaussian statistics that presents serious difficulties, especially in the presence of outliers in the measurements. In this work, we present maximum likelihood estimators associated with generalized Gaussian distributions in the context of R\'enyi, Tsallis and Kaniadakis statistics. In this regard, we analytically analyse the outlier-resistance of each proposal through the so-called influence function. In this way, we formulate inverse problems by constructing objective functions linked to the maximum likelihood estimators. To demonstrate the robustness of the generalized methodologies, we consider an important geophysical inverse problem with high noisy data with spikes. The results reveal that the best data inversion performance occurs when the entropic index from each generalized statistic is associated with objective functions proportional to the inverse of the error amplitude. We argue that in such a limit the three approaches are resistant to outliers and are also equivalent, which suggests a lower computational cost for the inversion process due to the reduction of numerical simulations to be performed and the fast convergence of the optimization process.
Gaussian process regression is a widely-applied method for function approximation and uncertainty quantification. The technique has gained popularity recently in the machine learning community due to its robustness and interpretability. The mathematical methods we discuss in this paper are an extension of the Gaussian-process framework. We are proposing advanced kernel designs that only allow for functions with certain desirable characteristics to be elements of the reproducing kernel Hilbert space (RKHS) that underlies all kernel methods and serves as the sample space for Gaussian process regression. These desirable characteristics reflect the underlying physics; two obvious examples are symmetry and periodicity constraints. In addition, non-stationary kernel designs can be defined in the same framework to yield flexible multi-task Gaussian processes. We will show the impact of advanced kernel designs on Gaussian processes using several synthetic and two scientific data sets. The results show that including domain knowledge, communicated through advanced kernel designs, has a significant impact on the accuracy and relevance of the function approximation.
Similarity/Distance measures play a key role in many machine learning, pattern recognition, and data mining algorithms, which leads to the emergence of metric learning field. Many metric learning algorithms learn a global distance function from data that satisfy the constraints of the problem. However, in many real-world datasets that the discrimination power of features varies in the different regions of input space, a global metric is often unable to capture the complexity of the task. To address this challenge, local metric learning methods are proposed that learn multiple metrics across the different regions of input space. Some advantages of these methods are high flexibility and the ability to learn a nonlinear mapping but typically achieves at the expense of higher time requirement and overfitting problem. To overcome these challenges, this research presents an online multiple metric learning framework. Each metric in the proposed framework is composed of a global and a local component learned simultaneously. Adding a global component to a local metric efficiently reduce the problem of overfitting. The proposed framework is also scalable with both sample size and the dimension of input data. To the best of our knowledge, this is the first local online similarity/distance learning framework based on PA (Passive/Aggressive). In addition, for scalability with the dimension of input data, DRP (Dual Random Projection) is extended for local online learning in the present work. It enables our methods to be run efficiently on high-dimensional datasets, while maintains their predictive performance. The proposed framework provides a straightforward local extension to any global online similarity/distance learning algorithm based on PA.