亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Image captioning models are typically trained by treating all samples equally, neglecting to account for mismatched or otherwise difficult data points. In contrast, recent work has shown the effectiveness of training models by scheduling the data using curriculum learning strategies. This paper contributes to this direction by actively curating difficult samples in datasets without increasing the total number of samples. We explore the effect of using three data curation methods within the training process: complete removal of an sample, caption replacement, or image replacement via a text-to-image generation model. Experiments on the Flickr30K and COCO datasets with the BLIP and BEiT-3 models demonstrate that these curation methods do indeed yield improved image captioning models, underscoring their efficacy.

相關內容

圖像字幕(Image Captioning),是指從圖像生成文本描述的過程,主要根據圖像中物體和物體的動作。

To allow for tractable probabilistic inference with respect to domain sizes, lifted probabilistic inference exploits symmetries in probabilistic graphical models. However, checking whether two factors encode equivalent semantics and hence are exchangeable is computationally expensive. In this paper, we efficiently solve the problem of detecting exchangeable factors in a factor graph. In particular, we introduce the detection of exchangeable factors (DEFT) algorithm, which allows us to drastically reduce the computational effort for checking whether two factors are exchangeable in practice. While previous approaches iterate all $O(n!)$ permutations of a factor's argument list in the worst case (where $n$ is the number of arguments of the factor), we prove that DEFT efficiently identifies restrictions to drastically reduce the number of permutations and validate the efficiency of DEFT in our empirical evaluation.

Vessel trajectory clustering, which aims to find similar trajectory patterns, has been widely leveraged in overwater applications. Most traditional methods use predefined rules and thresholds to identify discrete vessel behaviors. They aim for high-quality clustering and conduct clustering on entire sequences, whether the original trajectory or its sub-trajectories, failing to represent their evolution. To resolve this problem, we propose a Predictive Clustering of Hierarchical Vessel Behavior (PC-HiV). PC-HiV first uses hierarchical representations to transform every trajectory into a behavioral sequence. Then, it predicts evolution at each timestamp of the sequence based on the representations. By applying predictive clustering and latent encoding, PC-HiV improves clustering and predictions simultaneously. Experiments on real AIS datasets demonstrate PC-HiV's superiority over existing methods, showcasing its effectiveness in capturing behavioral evolution discrepancies between vessel types (tramp vs. liner) and within emission control areas. Results show that our method outperforms NN-Kmeans and Robust DAA by 3.9% and 6.4% of the purity score.

Solutions to differential equations, which are used to model physical systems, are computed numerically by solving a set of discretized equations. This set of discretized equations is reduced to a large linear system, whose solution is typically found using an iterative solver. We start with an initial guess, $x_0$, and iterate the algorithm to obtain a sequence of solution vectors, $x_k$, which are approximations to the exact solution of the linear system, $x$. The iterative algorithm is said to converge to $x$, in the field of reals, if and only if $x_k$ converges to $x$ in the limit of $k \to \infty$. In this paper, we formally prove the asymptotic convergence of a particular class of iterative methods called the stationary iterative methods, in the Coq theorem prover. We formalize the necessary and sufficient conditions required for the iterative convergence, and extend this result to two classical iterative methods: the Gauss--Seidel method and the Jacobi method. For the Gauss--Seidel method, we also formalize a set of easily testable conditions for iterative convergence, called the Reich theorem, for a particular matrix structure, and apply this on a model problem of the one-dimensional heat equation. We also apply the main theorem of iterative convergence to prove convergence of the Jacobi method on the model problem.

As machine learning models become increasingly larger, trained weakly supervised on large, possibly uncurated data sets, it becomes increasingly important to establish mechanisms for inspecting, interacting, and revising models to mitigate learning shortcuts and guarantee their learned knowledge is aligned with human knowledge. The recently proposed XIL framework was developed for this purpose, and several such methods have been introduced, each with individual motivations and methodological details. In this work, we provide a unification of various XIL methods into a single typology by establishing a common set of basic modules. In doing so, we pave the way for a principled comparison of existing, but, importantly, also future XIL approaches. In addition, we discuss existing and introduce novel measures and benchmarks for evaluating the overall abilities of a XIL method. Given this extensive toolbox, including our typology, measures, and benchmarks, we finally compare several recent XIL methods methodologically and quantitatively. In our evaluations, all methods prove to revise a model successfully. However, we found remarkable differences in individual benchmark tasks, revealing valuable application-relevant aspects for integrating these benchmarks in developing future methods.

We prove impossibility results for adaptivity in non-smooth stochastic convex optimization. Given a set of problem parameters we wish to adapt to, we define a "price of adaptivity" (PoA) that, roughly speaking, measures the multiplicative increase in suboptimality due to uncertainty in these parameters. When the initial distance to the optimum is unknown but a gradient norm bound is known, we show that the PoA is at least logarithmic for expected suboptimality, and double-logarithmic for median suboptimality. When there is uncertainty in both distance and gradient norm, we show that the PoA must be polynomial in the level of uncertainty. Our lower bounds nearly match existing upper bounds, and establish that there is no parameter-free lunch.

We introduce discretizations of infinite-dimensional optimization problems with total variation regularization and integrality constraints on the optimization variables. We advance the discretization of the dual formulation of the total variation term with Raviart--Thomas functions which is known from literature for certain convex problems. Since we have an integrality constraint, the previous analysis from Caillaud and Chambolle [10] does not hold anymore. Even weaker $\Gamma$-convergence results do not hold anymore because the recovery sequences generally need to attain non-integer values to recover the total variation of the limit function. We solve this issue by introducing a discretization of the input functions on an embedded, finer mesh. A superlinear coupling of the mesh sizes implies an averaging on the coarser mesh of the Raviart--Thomas ansatz, which enables to recover the total variation of integer-valued limit functions with integer-valued discretized input functions. Moreover, we are able to estimate the discretized total variation of the recovery sequence by the total variation of its limit and an error depending on the mesh size ratio. For the discretized optimization problems, we additionally add a constraint that vanishes in the limit and enforces compactness of the sequence of minimizers, which yields their convergence to a minimizer of the original problem. This constraint contains a degree of freedom whose admissible range is determined. Its choice may have a strong impact on the solutions in practice as we demonstrate with an example from imaging.

In settings with interference, it is common to utilize estimands defined by exposure mappings to summarize the impact of variation in treatment assignments local to the ego. This paper studies their causal interpretation under weak restrictions on interference. We demonstrate that the estimands can exhibit unpalatable sign reversals under conventional identification conditions. This motivates the formulation of sign preservation criteria for causal interpretability. To satisfy preferred criteria, it is necessary to impose restrictions on interference, either in potential outcomes or selection into treatment. We provide sufficient conditions and show that they are satisfied by a nonparametric model allowing for a complex form of interference in both the outcome and selection stages.

This work delves into the complexities of machine unlearning in the face of distributional shifts, particularly focusing on the challenges posed by non-uniform feature and label removal. With the advent of regulations like the GDPR emphasizing data privacy and the right to be forgotten, machine learning models face the daunting task of unlearning sensitive information without compromising their integrity or performance. Our research introduces a novel approach that leverages influence functions and principles of distributional independence to address these challenges. By proposing a comprehensive framework for machine unlearning, we aim to ensure privacy protection while maintaining model performance and adaptability across varying distributions. Our method not only facilitates efficient data removal but also dynamically adjusts the model to preserve its generalization capabilities. Through extensive experimentation, we demonstrate the efficacy of our approach in scenarios characterized by significant distributional shifts, making substantial contributions to the field of machine unlearning. This research paves the way for developing more resilient and adaptable unlearning techniques, ensuring models remain robust and accurate in the dynamic landscape of data privacy and machine learning.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

北京阿比特科技有限公司