亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Localization is paramount for autonomous robots. While camera and LiDAR-based approaches have been extensively investigated, they are affected by adverse illumination and weather conditions. Therefore, radar sensors have recently gained attention due to their intrinsic robustness to such conditions. In this paper, we propose RaLF, a novel deep neural network-based approach for localizing radar scans in a LiDAR map of the environment, by jointly learning to address both place recognition and metric localization. RaLF is composed of radar and LiDAR feature encoders, a place recognition head that generates global descriptors, and a metric localization head that predicts the 3-DoF transformation between the radar scan and the map. We tackle the place recognition task by learning a shared embedding space between the two modalities via cross-modal metric learning. Additionally, we perform metric localization by predicting pixel-level flow vectors that align the query radar scan with the LiDAR map. We extensively evaluate our approach on multiple real-world driving datasets and show that RaLF achieves state-of-the-art performance for both place recognition and metric localization. Moreover, we demonstrate that our approach can effectively generalize to different cities and sensor setups than the ones used during training. We make the code and trained models publicly available at //ralf.cs.uni-freiburg.de.

相關內容

Surgical robotics is a rising field in medical technology and advanced robotics. Robot assisted surgery, or robotic surgery, allows surgeons to perform complicated surgical tasks with more precision, automation, and flexibility than is possible for traditional surgical approaches. The main type of robot assisted surgery is minimally invasive surgery, which could be automated and result in a faster healing time for the patient. The surgical robot we are particularly interested in is the da Vinci surgical system, which is developed and manufactured by Intuitive Surgical. In the current iteration of the system, the endoscopic camera arm on the da Vinci robot has to be manually controlled and calibrated by the surgeon during a surgical task, which interrupts the flow of the operation. The main goal of this capstone project is to automate the motion of the camera arm using a probabilistic model based on surgeon eye gaze data and da Vinci robot kinematic data.

Learning from human feedback has been shown to improve text-to-image models. These techniques first learn a reward function that captures what humans care about in the task and then improve the models based on the learned reward function. Even though relatively simple approaches (e.g., rejection sampling based on reward scores) have been investigated, fine-tuning text-to-image models with the reward function remains challenging. In this work, we propose using online reinforcement learning (RL) to fine-tune text-to-image models. We focus on diffusion models, defining the fine-tuning task as an RL problem, and updating the pre-trained text-to-image diffusion models using policy gradient to maximize the feedback-trained reward. Our approach, coined DPOK, integrates policy optimization with KL regularization. We conduct an analysis of KL regularization for both RL fine-tuning and supervised fine-tuning. In our experiments, we show that DPOK is generally superior to supervised fine-tuning with respect to both image-text alignment and image quality. Our code is available at //github.com/google-research/google-research/tree/master/dpok.

Grasping objects with limited or no prior knowledge about them is a highly relevant skill in assistive robotics. Still, in this general setting, it has remained an open problem, especially when it comes to only partial observability and versatile grasping with multi-fingered hands. We present a novel, fast, and high fidelity deep learning pipeline consisting of a shape completion module that is based on a single depth image, and followed by a grasp predictor that is based on the predicted object shape. The shape completion network is based on VQDIF and predicts spatial occupancy values at arbitrary query points. As grasp predictor, we use our two-stage architecture that first generates hand poses using an autoregressive model and then regresses finger joint configurations per pose. Critical factors turn out to be sufficient data realism and augmentation, as well as special attention to difficult cases during training. Experiments on a physical robot platform demonstrate successful grasping of a wide range of household objects based on a depth image from a single viewpoint. The whole pipeline is fast, taking only about 1 s for completing the object's shape (0.7 s) and generating 1000 grasps (0.3 s).

Balance loss is a significant challenge in lower-limb exoskeleton applications, as it can lead to potential falls, thereby impacting user safety and confidence. We introduce a control framework for omnidirectional recovery step planning by online optimization of step duration and position in response to external forces. We map the step duration and position to a human-like foot trajectory, which is then translated into joint trajectories using inverse kinematics. These trajectories are executed via an impedance controller, promoting cooperation between the exoskeleton and the user. Moreover, our framework is based on the concept of the divergent component of motion, also known as the Extrapolated Center of Mass, which has been established as a consistent dynamic for describing human movement. This real-time online optimization framework enhances the adaptability of exoskeleton users under unforeseen forces thereby improving the overall user stability and safety. To validate the effectiveness of our approach, simulations, and experiments were conducted. Our push recovery experiments employing the exoskeleton in zero-torque mode (without assistance) exhibit an alignment with the exoskeleton's recovery assistance mode, that shows the consistency of the control framework with human intention. To the best of our knowledge, this is the first cooperative push recovery framework for the lower-limb human exoskeleton that relies on the simultaneous adaptation of intra-stride parameters in both frontal and sagittal directions. The proposed control scheme has been validated with human subject experiments.

Vision Transformers (ViTs) have revolutionized medical imaging analysis, showcasing superior efficacy compared to conventional Convolutional Neural Networks (CNNs) in vital tasks such as polyp classification, detection, and segmentation. Leveraging attention mechanisms to focus on specific image regions, ViTs exhibit contextual awareness in processing visual data, culminating in robust and precise predictions, even for intricate medical images. Moreover, the inherent self-attention mechanism in Transformers accommodates varying input sizes and resolutions, granting an unprecedented flexibility absent in traditional CNNs. However, Transformers grapple with challenges like excessive memory usage and limited training parallelism due to self-attention, rendering them impractical for real-time disease detection on resource-constrained devices. In this study, we address these hurdles by investigating the integration of the recently introduced retention mechanism into polyp segmentation, introducing RetSeg, an encoder-decoder network featuring multi-head retention blocks. Drawing inspiration from Retentive Networks (RetNet), RetSeg is designed to bridge the gap between precise polyp segmentation and resource utilization, particularly tailored for colonoscopy images. We train and validate RetSeg for polyp segmentation employing two publicly available datasets: Kvasir-SEG and CVC-ClinicDB. Additionally, we showcase RetSeg's promising performance across diverse public datasets, including CVC-ColonDB, ETIS-LaribPolypDB, CVC-300, and BKAI-IGH NeoPolyp. While our work represents an early-stage exploration, further in-depth studies are imperative to advance these promising findings.

Root Cause Analysis (RCA) is becoming increasingly crucial for ensuring the reliability of microservice systems. However, performing RCA on modern microservice systems can be challenging due to their large scale, as they usually comprise hundreds of components, leading significant human effort. This paper proposes TraceDiag, an end-to-end RCA framework that addresses the challenges for large-scale microservice systems. It leverages reinforcement learning to learn a pruning policy for the service dependency graph to automatically eliminates redundant components, thereby significantly improving the RCA efficiency. The learned pruning policy is interpretable and fully adaptive to new RCA instances. With the pruned graph, a causal-based method can be executed with high accuracy and efficiency. The proposed TraceDiag framework is evaluated on real data traces collected from the Microsoft Exchange system, and demonstrates superior performance compared to state-of-the-art RCA approaches. Notably, TraceDiag has been integrated as a critical component in the Microsoft M365 Exchange, resulting in a significant improvement in the system's reliability and a considerable reduction in the human effort required for RCA.

Domain adaptation is essential for activity recognition to ensure accurate and robust performance across diverse environments, sensor types, and data sources. Unsupervised domain adaptation methods have been extensively studied, yet, they require large-scale unlabeled data from the target domain. In this work, we address Few-Shot Domain Adaptation for video-based Activity Recognition (FSDA-AR), which leverages a very small amount of labeled target videos to achieve effective adaptation. This setting is attractive and promising for applications, as it requires recording and labeling only a few, or even a single example per class in the target domain, which often includes activities that are rare yet crucial to recognize. We construct FSDA-AR benchmarks using five established datasets considering diverse domain types: UCF101, HMDB51, EPIC-KITCHEN, Sims4Action, and ToyotaSmartHome. Our results demonstrate that FSDA-AR performs comparably to unsupervised domain adaptation with significantly fewer (yet labeled) target domain samples. We further propose a novel approach, RelaMiX, to better leverage the few labeled target domain samples as knowledge guidance. RelaMiX encompasses a temporal relational attention network with relation dropout, alongside a cross-domain information alignment mechanism. Furthermore, it integrates a mechanism for mixing features within a latent space by using the few-shot target domain samples. The proposed RelaMiX solution achieves state-of-the-art performance on all datasets within the FSDA-AR benchmark. To encourage future research of few-shot domain adaptation for video-based activity recognition, our benchmarks and source code are made publicly available at //github.com/KPeng9510/RelaMiX.

Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

北京阿比特科技有限公司