亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) demonstrate significant capabilities but face challenges such as hallucination, outdated knowledge, and non-transparent, untraceable reasoning processes. Retrieval-Augmented Generation (RAG) has emerged as a promising solution by incorporating knowledge from external databases. This enhances the accuracy and credibility of the models, particularly for knowledge-intensive tasks, and allows for continuous knowledge updates and integration of domain-specific information. RAG synergistically merges LLMs' intrinsic knowledge with the vast, dynamic repositories of external databases. This comprehensive review paper offers a detailed examination of the progression of RAG paradigms, encompassing the Naive RAG, the Advanced RAG, and the Modular RAG. It meticulously scrutinizes the tripartite foundation of RAG frameworks, which includes the retrieval , the generation and the augmentation techniques. The paper highlights the state-of-the-art technologies embedded in each of these critical components, providing a profound understanding of the advancements in RAG systems. Furthermore, this paper introduces the metrics and benchmarks for assessing RAG models, along with the most up-to-date evaluation framework. In conclusion, the paper delineates prospective avenues for research, including the identification of challenges, the expansion of multi-modalities, and the progression of the RAG infrastructure and its ecosystem.

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

Although Large Language Models (LLMs) have demonstrated strong performance on a wide range of tasks, they still face reliability challenges such as hallucination. Previous studies reveal that highly capable LLMs like GPT-4 are effective in judging the reliability of individual responses, while less capable ones are often tuned to evaluate the relative reliability of responses to the same query. To enable less capable LLMs to effectively judge the reliability of individual responses, we propose a novel method named $\textit{Meta}$ $\textit{Ranking}$ (MR). Unlike previous methods, which assess the response directly, we achieve the judgement by comparing the target query-response pair with reference query-response pairs. We found its remarkable effectiveness in error detection for LLM responses on reasoning tasks, where less capable LLMs could outperform strong baselines, even without fine-tuning. We further demonstrate that MR can be used to enhance the performance of LLMs in two practical applications: query routing and iterative training data filtering. The former achieves GPT-4-turbo comparable performance with less than half the token consumption, while the latter makes the instruction-tuned LLaMA-7B and Phi-2, a 2.7B model, significantly surpass Alpaca-13B over fewer training samples, underscoring the high potential of our proposed method.

Large Language Models (LLMs) face significant deployment challenges due to their substantial memory requirements and the computational demands of auto-regressive text generation process. This paper addresses these challenges by focusing on the quantization of LLMs, a technique that reduces memory consumption by converting model parameters and activations into low-bit integers. We critically analyze the existing quantization approaches, identifying their limitations in balancing the accuracy and efficiency of the quantized LLMs. To advance beyond these limitations, we propose WKVQuant, a PTQ framework especially designed for quantizing weights and the key/value (KV) cache of LLMs. Specifically, we incorporates past-only quantization to improve the computation of attention. Additionally, we introduce two-dimensional quantization strategy to handle the distribution of KV cache, along with a cross-block reconstruction regularization for parameter optimization. Experiments show that WKVQuant achieves almost comparable memory savings to weight-activation quantization, while also approaching the performance of weight-only quantization.

Incorporating natural language rationales in the prompt and In-Context Learning (ICL) has led to a significant improvement of Large Language Models (LLMs) performance. However, rationales currently require human-annotation or the use of auxiliary proxy models to target promising samples or generate high-quality rationales. In this work, we propose Self-AMPLIFY to generate automatically rationales from post hoc explanation methods applied to Small Language Models (SLMs) to improve their own performance. Self-AMPLIFY is a 3-step method that targets samples, generates rationales and builds a final prompt to leverage ICL. Self-AMPLIFY performance is evaluated on two SLMs and two datasets requiring reasoning abilities: these experiments show that Self-AMPLIFY achieves good results against competitors. Self-AMPLIFY is the first method to apply post hoc explanation methods to SLM to generate rationales to improve their own performance in a fully automated manner.

Generative Large Language Models (LLMs), such as ChatGPT, offer interactive APIs that can answer common questions at a human-expert level. However, these models often give inaccurate or incorrect responses when faced with questions requiring domain-specific or professional-specific knowledge not covered in their training corpus. Furthermore, many state-of-the-art LLMs are not open-source, making it challenging to inject knowledge with model APIs only. In this work, we introduce KnowGPT, a black-box knowledge injection framework for LLMs in question answering. KnowGPT leverages deep reinforcement learning (RL) to extract relevant knowledge from Knowledge Graphs (KGs) and use Multi-Armed Bandit (MAB) to construct the most suitable prompt for each question. Our extensive experiments on three benchmark datasets showcase that KnowGPT significantly enhances the existing methods. Notably, KnowGPT achieves an average improvement of 23.7% over ChatGPT and an average improvement of 2.9% over GPT-4. Additionally, KnowGPT attains a 91.6% accuracy on the OpenbookQA official leaderboard, which is comparable to human-level performance.

Hallucinations pose a significant challenge for the practical implementation of large language models (LLMs). The utilization of parametric knowledge in generating factual content is constrained by the limited knowledge of LLMs, potentially resulting in internal hallucinations. While incorporating external information can help fill knowledge gaps, it also introduces the risk of irrelevant information, thereby increasing the likelihood of external hallucinations. A careful and balanced integration of the parametric knowledge within LLMs with external information is crucial to alleviate hallucinations. In this study, we present Rowen, a novel approach that enhances LLMs with a selective retrieval augmentation process tailored to address hallucinated outputs. This process is governed by a multilingual semantic-aware detection module, which evaluates the consistency of the perturbed responses across various languages for the same queries. Upon detecting inconsistencies indicative of hallucinations, Rowen activates the retrieval of external information to rectify the model outputs. Rowen adeptly harmonizes the intrinsic parameters in LLMs with external knowledge sources, effectively mitigating hallucinations by ensuring a balanced integration of internal reasoning and external evidence. Through a comprehensive empirical analysis, we demonstrate that Rowen surpasses the current state-of-the-art in both detecting and mitigating hallucinated content within the outputs of LLMs.

Graph neural networks (GNNs) have recently demonstrated significant success. Active learning for GNNs aims to query the valuable samples from the unlabeled data for annotation to maximize the GNNs' performance at a low cost. However, most existing methods for reinforced active learning in GNNs may lead to a highly imbalanced class distribution, especially in highly skewed class scenarios. This further adversely affects the classification performance. To tackle this issue, in this paper, we propose a novel reinforced class-balanced active learning framework for GNNs, namely, GraphCBAL. It learns an optimal policy to acquire class-balanced and informative nodes for annotation, maximizing the performance of GNNs trained with selected labeled nodes. GraphCBAL designs class-balance-aware states, as well as a reward function that achieves trade-off between model performance and class balance. We further upgrade GraphCBAL to GraphCBAL++ by introducing a punishment mechanism to obtain a more class-balanced labeled set. Extensive experiments on multiple datasets demonstrate the effectiveness of the proposed approaches, achieving superior performance over state-of-the-art baselines. In particular, our methods can strike the balance between classification results and class balance.

Grounded Multimodal Named Entity Recognition (GMNER) is a nascent multimodal task that aims to identify named entities, entity types and their corresponding visual regions. GMNER task exhibits two challenging properties: 1) The weak correlation between image-text pairs in social media results in a significant portion of named entities being ungroundable. 2) There exists a distinction between coarse-grained referring expressions commonly used in similar tasks (e.g., phrase localization, referring expression comprehension) and fine-grained named entities. In this paper, we propose RiVEG, a unified framework that reformulates GMNER into a joint MNER-VE-VG task by leveraging large language models (LLMs) as a connecting bridge. This reformulation brings two benefits: 1) It maintains the optimal MNER performance and eliminates the need for employing object detection methods to pre-extract regional features, thereby naturally addressing two major limitations of existing GMNER methods. 2) The introduction of entity expansion expression and Visual Entailment (VE) Module unifies Visual Grounding (VG) and Entity Grounding (EG). It enables RiVEG to effortlessly inherit the Visual Entailment and Visual Grounding capabilities of any current or prospective multimodal pretraining models. Extensive experiments demonstrate that RiVEG outperforms state-of-the-art methods on the existing GMNER dataset and achieves absolute leads of 10.65%, 6.21%, and 8.83% in all three subtasks.

Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.

Recent VQA models may tend to rely on language bias as a shortcut and thus fail to sufficiently learn the multi-modal knowledge from both vision and language. In this paper, we investigate how to capture and mitigate language bias in VQA. Motivated by causal effects, we proposed a novel counterfactual inference framework, which enables us to capture the language bias as the direct causal effect of questions on answers and reduce the language bias by subtracting the direct language effect from the total causal effect. Experiments demonstrate that our proposed counterfactual inference framework 1) is general to various VQA backbones and fusion strategies, 2) achieves competitive performance on the language-bias sensitive VQA-CP dataset while performs robustly on the balanced VQA v2 dataset.

A sememe is defined as the minimum semantic unit of human languages. Sememe knowledge bases (KBs), which contain words annotated with sememes, have been successfully applied to many NLP tasks. However, existing sememe KBs are built on only a few languages, which hinders their widespread utilization. To address the issue, we propose to build a unified sememe KB for multiple languages based on BabelNet, a multilingual encyclopedic dictionary. We first build a dataset serving as the seed of the multilingual sememe KB. It manually annotates sememes for over $15$ thousand synsets (the entries of BabelNet). Then, we present a novel task of automatic sememe prediction for synsets, aiming to expand the seed dataset into a usable KB. We also propose two simple and effective models, which exploit different information of synsets. Finally, we conduct quantitative and qualitative analyses to explore important factors and difficulties in the task. All the source code and data of this work can be obtained on //github.com/thunlp/BabelNet-Sememe-Prediction.

北京阿比特科技有限公司