亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Explainable Artificial Intelligence (XAI) fills the role of a critical interface fostering interactions between sophisticated intelligent systems and diverse individuals, including data scientists, domain experts, end-users, and more. It aids in deciphering the intricate internal mechanisms of ``black box'' Machine Learning (ML), rendering the reasons behind their decisions more understandable. However, current research in XAI primarily focuses on two aspects; ways to facilitate user trust, or to debug and refine the ML model. The majority of it falls short of recognising the diverse types of explanations needed in broader contexts, as different users and varied application areas necessitate solutions tailored to their specific needs. One such domain is Predictive Maintenance (PdM), an exploding area of research under the Industry 4.0 \& 5.0 umbrella. This position paper highlights the gap between existing XAI methodologies and the specific requirements for explanations within industrial applications, particularly the Predictive Maintenance field. Despite explainability's crucial role, this subject remains a relatively under-explored area, making this paper a pioneering attempt to bring relevant challenges to the research community's attention. We provide an overview of predictive maintenance tasks and accentuate the need and varying purposes for corresponding explanations. We then list and describe XAI techniques commonly employed in the literature, discussing their suitability for PdM tasks. Finally, to make the ideas and claims more concrete, we demonstrate XAI applied in four specific industrial use cases: commercial vehicles, metro trains, steel plants, and wind farms, spotlighting areas requiring further research.

相關內容

Sustainability is crucial for combating climate change and protecting our planet. While there are various systems that can pose a threat to sustainability, data centers are particularly significant due to their substantial energy consumption and environmental impact. Although data centers are becoming increasingly accountable to be sustainable, the current practice of reporting sustainability data is often mired with simple green-washing. To improve this status quo, users as well as regulators need to verify the data on the sustainability impact reported by data center operators. To do so, data centers must have appropriate infrastructures in place that provide the guarantee that the data on sustainability is collected, stored, aggregated, and converted to metrics in a secure, unforgeable, and privacy-preserving manner. Therefore, this paper first introduces the new security challenges related to such infrastructure, how it affects operators and users, and potential solutions and research directions for addressing the challenges for data centers and other industry segments.

To improve the development of responsible AI systems, developers are increasingly utilizing tools such as checklists or guideline cards to ensure fairness, transparency, and sustainability. However, these tools face two main challenges. First, they are static and are not meant to keep pace with the latest responsible AI literature and international standards. Second, they tend to prioritize individual usage over fostering collaboration among AI practitioners. To overcome these limitations, we propose a method that enables easy updates of responsible AI guidelines by incorporating research papers and ISO standards, ensuring that the content remains relevant and up to date, while emphasizing actionable guidelines that can be implemented by a wide range of AI practitioners. We validated our method in a case study at a large tech company by designing and deploying a tool that recommends interactive and actionable guidelines, which were generated by a team of engineers, standardization experts, and a lawyer using our method. Through the study involving AI developers and engineers, we assessed the usability and effectiveness of the tool, showing that the guidelines were considered practical and actionable. The guidelines encouraged self-reflection and facilitated a better understanding of the ethical considerations of AI during the early stages of development, significantly contributing to the idea of "Responsible AI by Design" -- a design-first approach that considers responsible AI values throughout the development lifecycle and across business roles.

Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.

In the past few decades, artificial intelligence (AI) technology has experienced swift developments, changing everyone's daily life and profoundly altering the course of human society. The intention of developing AI is to benefit humans, by reducing human labor, bringing everyday convenience to human lives, and promoting social good. However, recent research and AI applications show that AI can cause unintentional harm to humans, such as making unreliable decisions in safety-critical scenarios or undermining fairness by inadvertently discriminating against one group. Thus, trustworthy AI has attracted immense attention recently, which requires careful consideration to avoid the adverse effects that AI may bring to humans, so that humans can fully trust and live in harmony with AI technologies. Recent years have witnessed a tremendous amount of research on trustworthy AI. In this survey, we present a comprehensive survey of trustworthy AI from a computational perspective, to help readers understand the latest technologies for achieving trustworthy AI. Trustworthy AI is a large and complex area, involving various dimensions. In this work, we focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being. For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems. We also discuss the accordant and conflicting interactions among different dimensions and discuss potential aspects for trustworthy AI to investigate in the future.

Recent years have seen important advances in the quality of state-of-the-art models, but this has come at the expense of models becoming less interpretable. This survey presents an overview of the current state of Explainable AI (XAI), considered within the domain of Natural Language Processing (NLP). We discuss the main categorization of explanations, as well as the various ways explanations can be arrived at and visualized. We detail the operations and explainability techniques currently available for generating explanations for NLP model predictions, to serve as a resource for model developers in the community. Finally, we point out the current gaps and encourage directions for future work in this important research area.

Interest in the field of Explainable Artificial Intelligence has been growing for decades and has accelerated recently. As Artificial Intelligence models have become more complex, and often more opaque, with the incorporation of complex machine learning techniques, explainability has become more critical. Recently, researchers have been investigating and tackling explainability with a user-centric focus, looking for explanations to consider trustworthiness, comprehensibility, explicit provenance, and context-awareness. In this chapter, we leverage our survey of explanation literature in Artificial Intelligence and closely related fields and use these past efforts to generate a set of explanation types that we feel reflect the expanded needs of explanation for today's artificial intelligence applications. We define each type and provide an example question that would motivate the need for this style of explanation. We believe this set of explanation types will help future system designers in their generation and prioritization of requirements and further help generate explanations that are better aligned to users' and situational needs.

In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.

Explainable recommendation attempts to develop models that generate not only high-quality recommendations but also intuitive explanations. The explanations may either be post-hoc or directly come from an explainable model (also called interpretable or transparent model in some context). Explainable recommendation tries to address the problem of why: by providing explanations to users or system designers, it helps humans to understand why certain items are recommended by the algorithm, where the human can either be users or system designers. Explainable recommendation helps to improve the transparency, persuasiveness, effectiveness, trustworthiness, and satisfaction of recommendation systems. In this survey, we review works on explainable recommendation in or before the year of 2019. We first highlight the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation on three perspectives: 1) We provide a chronological research timeline of explainable recommendation, including user study approaches in the early years and more recent model-based approaches. 2) We provide a two-dimensional taxonomy to classify existing explainable recommendation research: one dimension is the information source (or display style) of the explanations, and the other dimension is the algorithmic mechanism to generate explainable recommendations. 3) We summarize how explainable recommendation applies to different recommendation tasks, such as product recommendation, social recommendation, and POI recommendation. We also devote a section to discuss the explanation perspectives in broader IR and AI/ML research. We end the survey by discussing potential future directions to promote the explainable recommendation research area and beyond.

Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user's interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.

北京阿比特科技有限公司