亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the rapidly evolving landscape of large language models (LLMs), most research has primarily viewed them as independent individuals, focusing on assessing their capabilities through standardized benchmarks and enhancing their general intelligence. This perspective, however, tends to overlook the vital role of LLMs as user-centric services in human-AI collaboration. This gap in research becomes increasingly critical as LLMs become more integrated into people's everyday and professional interactions. This study addresses the important need to understand user satisfaction with LLMs by exploring four key aspects: comprehending user intents, scrutinizing user experiences, addressing major user concerns about current LLM services, and charting future research paths to bolster human-AI collaborations. Our study develops a taxonomy of 7 user intents in LLM interactions, grounded in analysis of real-world user interaction logs and human verification. Subsequently, we conduct a user survey to gauge their satisfaction with LLM services, encompassing usage frequency, experiences across intents, and predominant concerns. This survey, compiling 411 anonymous responses, uncovers 11 first-hand insights into the current state of user engagement with LLMs. Based on this empirical analysis, we pinpoint 6 future research directions prioritizing the user perspective in LLM developments. This user-centered approach is essential for crafting LLMs that are not just technologically advanced but also resonate with the intricate realities of human interactions and real-world applications.

相關內容

大(da)語言模(mo)(mo)型(xing)是基于(yu)海量文(wen)(wen)本數(shu)(shu)(shu)據訓(xun)練的(de)深度學習(xi)模(mo)(mo)型(xing)。它不僅能(neng)(neng)夠生(sheng)成自然語言文(wen)(wen)本,還能(neng)(neng)夠深入理(li)解(jie)文(wen)(wen)本含義,處理(li)各(ge)種自然語言任(ren)務,如文(wen)(wen)本摘(zhai)要、問答、翻譯(yi)等。2023年,大(da)語言模(mo)(mo)型(xing)及其在人(ren)(ren)工智能(neng)(neng)領域的(de)應用已成為全球科技研究的(de)熱點,其在規(gui)模(mo)(mo)上的(de)增長尤為引(yin)人(ren)(ren)注目,參(can)數(shu)(shu)(shu)量已從(cong)最初的(de)十幾億(yi)(yi)躍升到如今的(de)一萬億(yi)(yi)。參(can)數(shu)(shu)(shu)量的(de)提(ti)升使得模(mo)(mo)型(xing)能(neng)(neng)夠更(geng)(geng)加精(jing)細地捕(bu)捉人(ren)(ren)類(lei)語言微妙之處,更(geng)(geng)加深入地理(li)解(jie)人(ren)(ren)類(lei)語言的(de)復(fu)雜性。在過去(qu)的(de)一年里,大(da)語言模(mo)(mo)型(xing)在吸納新知(zhi)識、分解(jie)復(fu)雜任(ren)務以及圖文(wen)(wen)對齊(qi)等多(duo)方面都有(you)顯(xian)著提(ti)升。隨著技術的(de)不斷(duan)成熟,它將不斷(duan)拓(tuo)展(zhan)其應用范圍(wei),為人(ren)(ren)類(lei)提(ti)供更(geng)(geng)加智能(neng)(neng)化和個性化的(de)服務,進一步改善人(ren)(ren)們的(de)生(sheng)活和生(sheng)產方式。

Large language models (LLMs) often contain misleading content, emphasizing the need to align them with human values to ensure secure AI systems. Reinforcement learning from human feedback (RLHF) has been employed to achieve this alignment. However, it encompasses two main drawbacks: (1) RLHF exhibits complexity, instability, and sensitivity to hyperparameters in contrast to SFT. (2) Despite massive trial-and-error, multiple sampling is reduced to pair-wise contrast, thus lacking contrasts from a macro perspective. In this paper, we propose Preference Ranking Optimization (PRO) as an efficient SFT algorithm to directly fine-tune LLMs for human alignment. PRO extends the pair-wise contrast to accommodate preference rankings of any length. By iteratively contrasting candidates, PRO instructs the LLM to prioritize the best response while progressively ranking the rest responses. In this manner, PRO effectively transforms human alignment into aligning the probability ranking of n responses generated by LLM with the preference ranking of humans towards these responses. Experiments have shown that PRO outperforms baseline algorithms, achieving comparable results to ChatGPT and human responses through automatic-based, reward-based, GPT-4, and human evaluations.

Introduced to enhance the efficiency of large language model (LLM) inference, speculative decoding operates by having a smaller model generate a draft. A larger target model then reviews this draft to align with its output, and any acceptance by the target model results in a reduction of the number of the target model runs, ultimately improving efficiency. However, the drafting process in speculative decoding includes slow autoregressive generation and allocates equal time to generating tokens, irrespective of their importance. These inefficiencies collectively contribute to the suboptimal performance of speculative decoding. To further improve LLM inference, we introduce Cascade Speculative Drafting (CS Drafting), a speculative execution algorithm that incorporates two types of cascades. The Vertical Cascade eliminates autoregressive generation from neural models, while the Horizontal Cascade optimizes time allocation in drafting for improved efficiency. Combining both cascades, CS Drafting achieves up to an 81 percent additional speedup over speculative decoding in our experiments, while maintaining the same output distribution as the target model. Our code is publicly available at //github.com/lfsszd/CS-Drafting.

Despite the notable success of language models (LMs) in various natural language processing (NLP) tasks, the reliability of LMs is susceptible to backdoor attacks. Prior research attempts to mitigate backdoor learning while training the LMs on the poisoned dataset, yet struggles against complex backdoor attacks in real-world scenarios. In this paper, we investigate the learning mechanisms of backdoor LMs in the frequency space by Fourier analysis. Our findings indicate that the backdoor mapping presented on the poisoned datasets exhibits a more discernible inclination towards lower frequency compared to clean mapping, resulting in the faster convergence of backdoor mapping. To alleviate this dilemma, we propose Multi-Scale Low-Rank Adaptation (MuScleLoRA), which deploys multiple radial scalings in the frequency space with low-rank adaptation to the target model and further aligns the gradients when updating parameters. Through downscaling in the frequency space, MuScleLoRA encourages the model to prioritize the learning of relatively high-frequency clean mapping, consequently mitigating backdoor learning. Experimental results demonstrate that MuScleLoRA outperforms baselines significantly. Notably, MuScleLoRA reduces the average success rate of diverse backdoor attacks to below 15\% across multiple datasets and generalizes to various backbone LMs, including BERT, RoBERTa, and Llama2. The codes are available at //github.com/ZrW00/MuScleLoRA.

Impressive results have been achieved in natural language processing (NLP) tasks through the training of large language models (LLMs). However, these models occasionally produce toxic content such as insults, threats, and profanity in response to certain prompts, thereby constraining their practical utility. To tackle this issue, various finetuning-based and decoding-based approaches have been utilized to mitigate toxicity. However, these methods typically necessitate additional costs such as high-quality training data or auxiliary models. In this paper, we propose fine-grained detoxification via instance-level prefixes (FGDILP) to mitigate toxic text without additional cost. Specifically, FGDILP contrasts the contextualized representation in attention space using a positive prefix-prepended prompt against multiple negative prefix-prepended prompts at the instance level. This allows for constructing fine-grained subtoxicity vectors, which enables collaborative detoxification by fusing them to correct the normal generation process when provided with a raw prompt. We validate that FGDILP enables controlled text generation with regard to toxicity at both the utterance and context levels. Our method surpasses prompt-based baselines in detoxification, although at a slight cost to generation fluency and diversity.

In the rapidly evolving landscape of artificial intelligence (AI), generative large language models (LLMs) stand at the forefront, revolutionizing how we interact with our data. However, the computational intensity and memory consumption of deploying these models present substantial challenges in terms of serving efficiency, particularly in scenarios demanding low latency and high throughput. This survey addresses the imperative need for efficient LLM serving methodologies from a machine learning system (MLSys) research perspective, standing at the crux of advanced AI innovations and practical system optimizations. We provide in-depth analysis, covering a spectrum of solutions, ranging from cutting-edge algorithmic modifications to groundbreaking changes in system designs. The survey aims to provide a comprehensive understanding of the current state and future directions in efficient LLM serving, offering valuable insights for researchers and practitioners in overcoming the barriers of effective LLM deployment, thereby reshaping the future of AI.

Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

The notion of "in-domain data" in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司