亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Non-autoregressive (NAR) modeling has gained more and more attention in speech processing. With recent state-of-the-art attention-based automatic speech recognition (ASR) structure, NAR can realize promising real-time factor (RTF) improvement with only small degradation of accuracy compared to the autoregressive (AR) models. However, the recognition inference needs to wait for the completion of a full speech utterance, which limits their applications on low latency scenarios. To address this issue, we propose a novel end-to-end streaming NAR speech recognition system by combining blockwise-attention and connectionist temporal classification with mask-predict (Mask-CTC) NAR. During inference, the input audio is separated into small blocks and then processed in a blockwise streaming way. To address the insertion and deletion error at the edge of the output of each block, we apply an overlapping decoding strategy with a dynamic mapping trick that can produce more coherent sentences. Experimental results show that the proposed method improves online ASR recognition in low latency conditions compared to vanilla Mask-CTC. Moreover, it can achieve a much faster inference speed compared to the AR attention-based models. All of our codes will be publicly available at //github.com/espnet/espnet.

相關內容

語(yu)(yu)(yu)音識(shi)別是計(ji)算機科(ke)(ke)學(xue)和計(ji)算語(yu)(yu)(yu)言(yan)學(xue)的(de)一個跨學(xue)科(ke)(ke)子領域,它發展了一些方(fang)法和技術,使(shi)計(ji)算機可以將(jiang)口語(yu)(yu)(yu)識(shi)別和翻譯成文(wen)本。 它也被稱為自動語(yu)(yu)(yu)音識(shi)別(ASR),計(ji)算機語(yu)(yu)(yu)音識(shi)別或語(yu)(yu)(yu)音轉文(wen)本(STT)。它整合(he)了計(ji)算機科(ke)(ke)學(xue),語(yu)(yu)(yu)言(yan)學(xue)和計(ji)算機工(gong)程領域的(de)知識(shi)和研究。

Mandarin-English code-switching (CS) is frequently used among East and Southeast Asian people. However, the intra-sentence language switching of the two very different languages makes recognizing CS speech challenging. Meanwhile, the recent successful non-autoregressive (NAR) ASR models remove the need for left-to-right beam decoding in autoregressive (AR) models and achieved outstanding performance and fast inference speed, but it has not been applied to Mandarin-English CS speech recognition. This paper takes advantage of the Mask-CTC NAR ASR framework to tackle the CS speech recognition issue. We further propose to change the Mandarin output target of the encoder to Pinyin for faster encoder training and introduce the Pinyin-to-Mandarin decoder to learn contextualized information. Moreover, we use word embedding label smoothing to regularize the decoder with contextualized information and projection matrix regularization to bridge that gap between the encoder and decoder. We evaluate these methods on the SEAME corpus and achieved exciting results.

Traditional Query-by-Example (QbE) speech search approaches usually use methods based on frame-level features, while state-of-the-art approaches tend to use models based on acoustic word embeddings (AWEs) to transform variable length audio signals into fixed length feature vector representations. However, these approaches cannot meet the requirements of the search quality as well as speed at the same time. In this paper, we propose a novel fast QbE speech search method based on separable models to fix this problem. First, a QbE speech search training framework is introduced. Second, we design a novel model inference scheme based on RepVGG which can efficiently improve the QbE search quality. Third, we modify and improve our QbE speech search model according to the proposed model inference scheme. Experiments on keywords dataset shows that our proposed method can improve the GPU Real-time Factor (RTF) from 1/150 to 1/2300 by just applying separable model scheme and outperforms other state-of-the-art methods.

Contextual knowledge is important for real-world automatic speech recognition (ASR) applications. In this paper, a novel tree-constrained pointer generator (TCPGen) component is proposed that incorporates such knowledge as a list of biasing words into both attention-based encoder-decoder and transducer end-to-end ASR models in a neural-symbolic way. TCPGen structures the biasing words into an efficient prefix tree to serve as its symbolic input and creates a neural shortcut between the tree and the final ASR output distribution to facilitate recognising biasing words during decoding. Systems were trained and evaluated on the Librispeech corpus where biasing words were extracted at the scales of an utterance, a chapter, or a book to simulate different application scenarios. Experimental results showed that TCPGen consistently improved word error rates (WERs) compared to the baselines, and in particular, achieved significant WER reductions on the biasing words. TCPGen is highly efficient: it can handle 5,000 biasing words and distractors and only add a small overhead to memory use and computation cost.

Most recent semantic segmentation methods adopt a fully-convolutional network (FCN) with an encoder-decoder architecture. The encoder progressively reduces the spatial resolution and learns more abstract/semantic visual concepts with larger receptive fields. Since context modeling is critical for segmentation, the latest efforts have been focused on increasing the receptive field, through either dilated/atrous convolutions or inserting attention modules. However, the encoder-decoder based FCN architecture remains unchanged. In this paper, we aim to provide an alternative perspective by treating semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer (ie, without convolution and resolution reduction) to encode an image as a sequence of patches. With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR). Extensive experiments show that SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes. Particularly, we achieve the first (44.42% mIoU) position in the highly competitive ADE20K test server leaderboard.

Recently, fully recurrent neural network (RNN) based end-to-end models have been proven to be effective for multi-speaker speech recognition in both the single-channel and multi-channel scenarios. In this work, we explore the use of Transformer models for these tasks by focusing on two aspects. First, we replace the RNN-based encoder-decoder in the speech recognition model with a Transformer architecture. Second, in order to use the Transformer in the masking network of the neural beamformer in the multi-channel case, we modify the self-attention component to be restricted to a segment rather than the whole sequence in order to reduce computation. Besides the model architecture improvements, we also incorporate an external dereverberation preprocessing, the weighted prediction error (WPE), enabling our model to handle reverberated signals. Experiments on the spatialized wsj1-2mix corpus show that the Transformer-based models achieve 40.9% and 25.6% relative WER reduction, down to 12.1% and 6.4% WER, under the anechoic condition in single-channel and multi-channel tasks, respectively, while in the reverberant case, our methods achieve 41.5% and 13.8% relative WER reduction, down to 16.5% and 15.2% WER.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

We present DeepICP - a novel end-to-end learning-based 3D point cloud registration framework that achieves comparable registration accuracy to prior state-of-the-art geometric methods. Different from other keypoint based methods where a RANSAC procedure is usually needed, we implement the use of various deep neural network structures to establish an end-to-end trainable network. Our keypoint detector is trained through this end-to-end structure and enables the system to avoid the inference of dynamic objects, leverages the help of sufficiently salient features on stationary objects, and as a result, achieves high robustness. Rather than searching the corresponding points among existing points, the key contribution is that we innovatively generate them based on learned matching probabilities among a group of candidates, which can boost the registration accuracy. Our loss function incorporates both the local similarity and the global geometric constraints to ensure all above network designs can converge towards the right direction. We comprehensively validate the effectiveness of our approach using both the KITTI dataset and the Apollo-SouthBay dataset. Results demonstrate that our method achieves comparable or better performance than the state-of-the-art geometry-based methods. Detailed ablation and visualization analysis are included to further illustrate the behavior and insights of our network. The low registration error and high robustness of our method makes it attractive for substantial applications relying on the point cloud registration task.

End-to-end approaches have drawn much attention recently for significantly simplifying the construction of an automatic speech recognition (ASR) system. RNN transducer (RNN-T) is one of the popular end-to-end methods. Previous studies have shown that RNN-T is difficult to train and a very complex training process is needed for a reasonable performance. In this paper, we explore RNN-T for a Chinese large vocabulary continuous speech recognition (LVCSR) task and aim to simplify the training process while maintaining performance. First, a new strategy of learning rate decay is proposed to accelerate the model convergence. Second, we find that adding convolutional layers at the beginning of the network and using ordered data can discard the pre-training process of the encoder without loss of performance. Besides, we design experiments to find a balance among the usage of GPU memory, training circle and model performance. Finally, we achieve 16.9% character error rate (CER) on our test set which is 2% absolute improvement from a strong BLSTM CE system with language model trained on the same text corpus.

This paper investigates the impact of word-based RNN language models (RNN-LMs) on the performance of end-to-end automatic speech recognition (ASR). In our prior work, we have proposed a multi-level LM, in which character-based and word-based RNN-LMs are combined in hybrid CTC/attention-based ASR. Although this multi-level approach achieves significant error reduction in the Wall Street Journal (WSJ) task, two different LMs need to be trained and used for decoding, which increase the computational cost and memory usage. In this paper, we further propose a novel word-based RNN-LM, which allows us to decode with only the word-based LM, where it provides look-ahead word probabilities to predict next characters instead of the character-based LM, leading competitive accuracy with less computation compared to the multi-level LM. We demonstrate the efficacy of the word-based RNN-LMs using a larger corpus, LibriSpeech, in addition to WSJ we used in the prior work. Furthermore, we show that the proposed model achieves 5.1 %WER for WSJ Eval'92 test set when the vocabulary size is increased, which is the best WER reported for end-to-end ASR systems on this benchmark.

Attention-based encoder-decoder architectures such as Listen, Attend, and Spell (LAS), subsume the acoustic, pronunciation and language model components of a traditional automatic speech recognition (ASR) system into a single neural network. In our previous work, we have shown that such architectures are comparable to state-of-the-art ASR systems on dictation tasks, but it was not clear if such architectures would be practical for more challenging tasks such as voice search. In this work, we explore a variety of structural and optimization improvements to our LAS model which significantly improve performance. On the structural side, we show that word piece models can be used instead of graphemes. We introduce a multi-head attention architecture, which offers improvements over the commonly-used single-head attention. On the optimization side, we explore techniques such as synchronous training, scheduled sampling, label smoothing, and minimum word error rate optimization, which are all shown to improve accuracy. We present results with a unidirectional LSTM encoder for streaming recognition. On a 12,500 hour voice search task, we find that the proposed changes improve the WER of the LAS system from 9.2% to 5.6%, while the best conventional system achieve 6.7% WER. We also test both models on a dictation dataset, and our model provide 4.1% WER while the conventional system provides 5% WER.

北京阿比特科技有限公司