亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we explore Parameter-Efficient-Learning (PEL) techniques to repurpose a General-Purpose-Speech (GSM) model for Arabic dialect identification (ADI). Specifically, we investigate different setups to incorporate trainable features into a multi-layer encoder-decoder GSM formulation under frozen pre-trained settings. Our architecture includes residual adapter and model reprogramming (input-prompting). We design a token-level label mapping to condition the GSM for Arabic Dialect Identification (ADI). This is challenging due to the high variation in vocabulary and pronunciation among the numerous regional dialects. We achieve new state-of-the-art accuracy on the ADI-17 dataset by vanilla fine-tuning. We further reduce the training budgets with the PEL method, which performs within 1.86% accuracy to fine-tuning using only 2.5% of (extra) network trainable parameters. Our study demonstrates how to identify Arabic dialects using a small dataset and limited computation with open source code and pre-trained models.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 數據集 · Extensibility · EASE · state-of-the-art ·
2023 年 11 月 16 日

In this work, we present a novel Sports Ball Detection and Tracking (SBDT) method that can be applied to various sports categories. Our approach is composed of (1) high-resolution feature extraction, (2) position-aware model training, and (3) inference considering temporal consistency, all of which are put together as a new SBDT baseline. Besides, to validate the wide-applicability of our approach, we compare our baseline with 6 state-of-the-art SBDT methods on 5 datasets from different sports categories. We achieve this by newly introducing two SBDT datasets, providing new ball annotations for two datasets, and re-implementing all the methods to ease extensive comparison. Experimental results demonstrate that our approach is substantially superior to existing methods on all the sports categories covered by the datasets. We believe our proposed method can play as a Widely Applicable Strong Baseline (WASB) of SBDT, and our datasets and codebase will promote future SBDT research. Datasets and codes are available at //github.com/nttcom/WASB-SBDT .

In this work we consider the HYBRID model of distributed computing, introduced recently by Augustine, Hinnenthal, Kuhn, Scheideler, and Schneider (SODA 2020), where nodes have access to two different communication modes: high-bandwidth local communication along the edges of the graph and low-bandwidth all-to-all communication, capturing the non-uniform nature of modern communication networks. Prior work in HYBRID has focused on showing existentially optimal algorithms, meaning there exists a pathological family of instances on which no algorithm can do better. This neglects the fact that such worst-case instances often do not appear or can be actively avoided in practice. In this work, we focus on the notion of universal optimality, first raised by Garay, Kutten, and Peleg (FOCS 1993). Roughly speaking, a universally optimal algorithm is one that, given any input graph, runs as fast as the best algorithm designed specifically for that graph. We show the first universally optimal algorithms in HYBRID. We present universally optimal solutions for fundamental information dissemination tasks, such as broadcasting and unicasting multiple messages in HYBRID. Furthermore, we apply these tools to obtain universally optimal solutions for various shortest paths problems in HYBRID. A main conceptual contribution of this work is the conception of a new graph parameter called neighborhood quality that captures the inherent complexity of many fundamental graph problems in HYBRID. We also show new existentially optimal shortest paths algorithms in HYBRID, which are utilized as key subroutines in our universally optimal algorithms and are of independent interest. Our new algorithms for $k$-source shortest paths match the existing $\tilde{\Omega}(\sqrt{k})$ lower bound for all $k$. Previously, the lower bound was only known to be tight when $k \in \tilde{\Omega}(n^{2/3})$.

In this work, we investigate the channel estimation (CE) problem for extremely large-scale multiple-input-multiple-output (XL-MIMO) systems, considering both the spherical wavefront effect and spatial non-stationarity (SnS). Unlike existing non-stationary CE methods that rely on the statistical characteristics of channels in the spatial or temporal domain, our approach seeks to leverage sparsity in both the spatial and wavenumber domains simultaneously to achieve an accurate estimation.To this end, we introduce a two-stage visibility region (VR) detection and CE framework. Specifically, in the first stage, the belief regarding the visibility of antennas is obtained through a structured message passing (MP) scheme, which fully exploits the block sparse structure of the antenna-domain channel. In the second stage, using the obtained VR information and wavenumber-domain sparsity, we accurately estimate the SnS channel employing the belief-based orthogonal matching pursuit (BB-OMP) method. Simulations demonstrate that the proposed algorithms lead to a significant enhancement in VR detection and CE accuracy, especially in low signal-to-noise ratio (SNR) scenarios.

Diffusion models are at the vanguard of generative AI research with renowned solutions such as ImageGen by Google Brain and DALL.E 3 by OpenAI. Nevertheless, the potential merits of diffusion models for communication engineering applications are not fully understood yet. In this paper, we aim to unleash the power of generative AI for PHY design of constellation symbols in communication systems. Although the geometry of constellations is predetermined according to networking standards, e.g., quadrature amplitude modulation (QAM), probabilistic shaping can design the probability of occurrence (generation) of constellation symbols. This can help improve the information rate and decoding performance of communication systems. We exploit the ``denoise-and-generate'' characteristics of denoising diffusion probabilistic models (DDPM) for probabilistic constellation shaping. The key idea is to learn generating constellation symbols out of noise, ``mimicking'' the way the receiver performs symbol reconstruction. This way, we make the constellation symbols sent by the transmitter, and what is inferred (reconstructed) at the receiver become as similar as possible, resulting in as few mismatches as possible. Our results show that the generative AI-based scheme outperforms deep neural network (DNN)-based benchmark and uniform shaping, while providing network resilience as well as robust out-of-distribution performance under low-SNR regimes and non-Gaussian assumptions. Numerical evaluations highlight 30% improvement in terms of cosine similarity and a threefold improvement in terms of mutual information compared to DNN-based approach for 64-QAM geometry.

Existing work on jailbreak Multimodal Large Language Models (MLLMs) has focused primarily on adversarial examples in model inputs, with less attention to vulnerabilities in model APIs. To fill the research gap, we carry out the following work: 1) We discover a system prompt leakage vulnerability in GPT-4V. Through carefully designed dialogue, we successfully steal the internal system prompts of GPT-4V. This finding indicates potential exploitable security risks in MLLMs; 2)Based on the acquired system prompts, we propose a novel MLLM jailbreaking attack method termed SASP (Self-Adversarial Attack via System Prompt). By employing GPT-4 as a red teaming tool against itself, we aim to search for potential jailbreak prompts leveraging stolen system prompts. Furthermore, in pursuit of better performance, we also add human modification based on GPT-4's analysis, which further improves the attack success rate to 98.7\%; 3) We evaluated the effect of modifying system prompts to defend against jailbreaking attacks. Results show that appropriately designed system prompts can significantly reduce jailbreak success rates. Overall, our work provides new insights into enhancing MLLM security, demonstrating the important role of system prompts in jailbreaking, which could be leveraged to greatly facilitate jailbreak success rates while also holding the potential for defending against jailbreaks.

To model existing or future Low Earth Orbit (LEO) satellite networks with multiple constellations, we propose a simple analytical approach to represent the clustering of LEO satellites on orbits, based on a Cox point process. More precisely, we develop a variable-altitude Poisson orbit process that effectively captures the geometric fact that satellites are always positioned on orbits, and these orbits may vary in altitude. Conditioned on the orbit process, satellites situated on these orbits are modeled as Poisson point processes, thereby forming a Cox point process. For this model, we derive useful statistics, including the distribution of the distance to the nearest visible satellite, the outage probability, the Laplace functional of the proposed Cox satellite point process, and the Laplace transform of the interference from the Cox-distributed satellites under general fading. The derived statistics enable the evaluation of the performance of LEO satellite communication systems as functions of network parameters.

This work aims to provide an engagement decision support tool for Beyond Visual Range (BVR) air combat in the context of Defensive Counter Air (DCA) missions. In BVR air combat, engagement decision refers to the choice of the moment the pilot engages a target by assuming an offensive stance and executing corresponding maneuvers. To model this decision, we use the Brazilian Air Force's Aerospace Simulation Environment (\textit{Ambiente de Simula\c{c}\~ao Aeroespacial - ASA} in Portuguese), which generated 3,729 constructive simulations lasting 12 minutes each and a total of 10,316 engagements. We analyzed all samples by an operational metric called the DCA index, which represents, based on the experience of subject matter experts, the degree of success in this type of mission. This metric considers the distances of the aircraft of the same team and the opposite team, the point of Combat Air Patrol, and the number of missiles used. By defining the engagement status right before it starts and the average of the DCA index throughout the engagement, we create a supervised learning model to determine the quality of a new engagement. An algorithm based on decision trees, working with the XGBoost library, provides a regression model to predict the DCA index with a coefficient of determination close to 0.8 and a Root Mean Square Error of 0.05 that can furnish parameters to the BVR pilot to decide whether or not to engage. Thus, using data obtained through simulations, this work contributes by building a decision support system based on machine learning for BVR air combat.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司