Many flexible families of positive random variables exhibit non-closed forms of the density and distribution functions and this feature is considered unappealing for modelling purposes. However, such families are often characterized by a simple expression of the corresponding Laplace transform. Relying on the Laplace transform, we propose to carry out parameter estimation and goodness-of-fit testing for a general class of non-standard laws. We suggest a novel data-driven inferential technique, providing parameter estimators and goodness-of-fit tests, whose large-sample properties are derived. The implementation of the method is specifically considered for the positive stable and Tweedie distributions. A Monte Carlo study shows good finite-sample performance of the proposed technique for such laws.
Highly resolved finite element simulations of a laser beam welding process are considered. The thermomechanical behavior of this process is modeled with a set of thermoelasticity equations resulting in a nonlinear, nonsymmetric saddle point system. Newton's method is used to solve the nonlinearity and suitable domain decomposition preconditioners are applied to accelerate the convergence of the iterative method used to solve all linearized systems. Since a onelevel Schwarz preconditioner is in general not scalable, a second level has to be added. Therefore, the construction and numerical analysis of a monolithic, twolevel overlapping Schwarz approach with the GDSW (Generalized Dryja-Smith-Widlund) coarse space and an economic variant thereof are presented here.
Efficiently enumerating all the extreme points of a polytope identified by a system of linear inequalities is a well-known challenge issue.We consider a special case and present an algorithm that enumerates all the extreme points of a bisubmodular polyhedron in $\mathcal{O}(n^4|V|)$ time and $\mathcal{O}(n^2)$ space complexity, where $ n$ is the dimension of underlying space and $V$ is the set of outputs. We use the reverse search and signed poset linked to extreme points to avoid the redundant search. Our algorithm is a generalization of enumerating all the extreme points of a base polyhedron which comprises some combinatorial enumeration problems.
The use of operator-splitting methods to solve differential equations is widespread, but the methods are generally only defined for a given number of operators, most commonly two. Most operator-splitting methods are not generalizable to problems with $N$ operators for arbitrary $N$. In fact, there are only two known methods that can be applied to general $N$-split problems: the first-order Lie--Trotter (or Godunov) method and the second-order Strang (or Strang--Marchuk) method. In this paper, we derive two second-order operator-splitting methods that also generalize to $N$-split problems. These methods are complex valued but have positive real parts, giving them favorable stability properties, and require few sub-integrations per stage, making them computationally inexpensive. They can also be used as base methods from which to construct higher-order $N$-split operator-splitting methods with positive real parts. We verify the orders of accuracy of these new $N$-split methods and demonstrate their favorable efficiency properties against well-known real-valued operator-splitting methods on both real-valued and complex-valued differential equations.
This work studies the parameter-dependent diffusion equation in a two-dimensional domain consisting of locally mirror symmetric layers. It is assumed that the diffusion coefficient is a constant in each layer. The goal is to find approximate parameter-to-solution maps that have a small number of terms. It is shown that in the case of two layers one can find a solution formula consisting of three terms with explicit dependencies on the diffusion coefficient. The formula is based on decomposing the solution into orthogonal parts related to both of the layers and the interface between them. This formula is then expanded to an approximate one for the multi-layer case. We give an analytical formula for square layers and use the finite element formulation for more general layers. The results are illustrated with numerical examples and have applications for reduced basis methods by analyzing the Kolmogorov n-width.
We consider optimal experimental design (OED) for Bayesian nonlinear inverse problems governed by partial differential equations (PDEs) under model uncertainty. Specifically, we consider inverse problems in which, in addition to the inversion parameters, the governing PDEs include secondary uncertain parameters. We focus on problems with infinite-dimensional inversion and secondary parameters and present a scalable computational framework for optimal design of such problems. The proposed approach enables Bayesian inversion and OED under uncertainty within a unified framework. We build on the Bayesian approximation error (BAE) approach, to incorporate modeling uncertainties in the Bayesian inverse problem, and methods for A-optimal design of infinite-dimensional Bayesian nonlinear inverse problems. Specifically, a Gaussian approximation to the posterior at the maximum a posteriori probability point is used to define an uncertainty aware OED objective that is tractable to evaluate and optimize. In particular, the OED objective can be computed at a cost, in the number of PDE solves, that does not grow with the dimension of the discretized inversion and secondary parameters. The OED problem is formulated as a binary bilevel PDE constrained optimization problem and a greedy algorithm, which provides a pragmatic approach, is used to find optimal designs. We demonstrate the effectiveness of the proposed approach for a model inverse problem governed by an elliptic PDE on a three-dimensional domain. Our computational results also highlight the pitfalls of ignoring modeling uncertainties in the OED and/or inference stages.
Bent functions are maximally nonlinear Boolean functions with an even number of variables, which include a subclass of functions, the so-called hyper-bent functions whose properties are stronger than bent functions and a complete classification of hyper-bent functions is elusive and inavailable.~In this paper,~we solve an open problem of Mesnager that describes hyper-bentness of hyper-bent functions with multiple trace terms via Dillon-like exponents with coefficients in the extension field~$\mathbb{F}_{2^{2m}}$~of this field~$\mathbb{F}_{2^{m}}$. By applying M\"{o}bius transformation and the theorems of hyperelliptic curves, hyper-bentness of these functions are successfully characterized in this field~$\mathbb{F}_{2^{2m}}$ with~$m$~odd integer.
This paper introduces a new numerical scheme for a system that includes evolution equations describing a perfect plasticity model with a time-dependent yield surface. We demonstrate that the solution to the proposed scheme is stable under suitable norms. Moreover, the stability leads to the existence of an exact solution, and we also prove that the solution to the proposed scheme converges strongly to the exact solution under suitable norms.
We deal with a model selection problem for structural equation modeling (SEM) with latent variables for diffusion processes. Based on the asymptotic expansion of the marginal quasi-log likelihood, we propose two types of quasi-Bayesian information criteria of the SEM. It is shown that the information criteria have model selection consistency. Furthermore, we examine the finite-sample performance of the proposed information criteria by numerical experiments.
Detecting and quantifying causality is a focal topic in the fields of science, engineering, and interdisciplinary studies. However, causal studies on non-intervention systems attract much attention but remain extremely challenging. To address this challenge, we propose a framework named Interventional Dynamical Causality (IntDC) for such non-intervention systems, along with its computational criterion, Interventional Embedding Entropy (IEE), to quantify causality. The IEE criterion theoretically and numerically enables the deciphering of IntDC solely from observational (non-interventional) time-series data, without requiring any knowledge of dynamical models or real interventions in the considered system. Demonstrations of performance showed the accuracy and robustness of IEE on benchmark simulated systems as well as real-world systems, including the neural connectomes of C. elegans, COVID-19 transmission networks in Japan, and regulatory networks surrounding key circadian genes.
Many economic panel and dynamic models, such as rational behavior and Euler equations, imply that the parameters of interest are identified by conditional moment restrictions. We introduce a novel inference method without any prior information about which conditioning instruments are weak or irrelevant. Building on Bierens (1990), we propose penalized maximum statistics and combine bootstrap inference with model selection. Our method optimizes asymptotic power by solving a data-dependent max-min problem for tuning parameter selection. Extensive Monte Carlo experiments, based on an empirical example, demonstrate the extent to which our inference procedure is superior to those available in the literature.