亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Audit logs containing system level events are frequently used for behavior modeling as they can provide detailed insight into cyber-threat occurrences. However, mapping low-level system events in audit logs to highlevel behaviors has been a major challenge in identifying host contextual behavior for the purpose of detecting potential cyber threats. Relying on domain expert knowledge may limit its practical implementation. This paper presents TapTree, an automated process-tree based technique to extract host behavior by compiling system events' semantic information. After extracting behaviors as system generated process trees, TapTree integrates event semantics as a representation of behaviors. To further reduce pattern matching workloads for the analyst, TapTree aggregates semantically equivalent patterns and optimizes representative behaviors. In our evaluation against a recent benchmark audit log dataset (DARPA OpTC), TapTree employs tree pattern queries and sequential pattern mining techniques to deduce the semantics of connected system events, achieving high accuracy for behavior abstraction and then Advanced Persistent Threat (APT) attack detection. Moreover, we illustrate how to update the baseline model gradually online, allowing it to adapt to new log patterns over time.

相關內容

序列模式挖掘(jue) (sequence pattern mining )是指挖掘(jue)相對時間(jian)或(huo)其他(ta)模式出現頻率(lv)高的模式,典型(xing)的應用還是限于離(li)散(san)型(xing)的序列。

The notable success of large language models (LLMs) has sparked an upsurge in building language agents to complete various complex tasks. We present AMOR, an agent framework based on open-source LLMs, which reasons with external knowledge bases and adapts to specific domains through human supervision to the reasoning process. AMOR builds reasoning logic over a finite state machine (FSM) that solves problems through autonomous executions and transitions over disentangled modules. This allows humans to provide direct feedback to the individual modules, and thus naturally forms process supervision. Based on this reasoning and feedback framework, we develop AMOR through two-stage fine-tuning: warm-up and adaptation. The former fine-tunes the LLM with examples automatically constructed from various public datasets and enables AMOR to generalize across different knowledge environments, while the latter tailors AMOR to specific domains using process feedback. Extensive experiments across multiple domains demonstrate the advantage of AMOR to strong baselines, thanks to its FSM-based reasoning and process feedback mechanism.

Diffusion models have been widely deployed in various image generation tasks, demonstrating an extraordinary connection between image and text modalities. However, they face challenges of being maliciously exploited to generate harmful or sensitive images by appending a specific suffix to the original prompt. Existing works mainly focus on using single-modal information to conduct attacks, which fails to utilize multi-modal features and results in less than satisfactory performance. Integrating multi-modal priors (MMP), i.e. both text and image features, we propose a targeted attack method named MMP-Attack in this work. Specifically, the goal of MMP-Attack is to add a target object into the image content while simultaneously removing the original object. The MMP-Attack shows a notable advantage over existing works with superior universality and transferability, which can effectively attack commercial text-to-image (T2I) models such as DALL-E 3. To the best of our knowledge, this marks the first successful attempt of transfer-based attack to commercial T2I models. Our code is publicly available at \url{//github.com/ydc123/MMP-Attack}.

Curvilinear structures, which include line-like continuous objects, are fundamental geometrical elements in image-based applications. Reconstructing these structures from images constitutes a pivotal research area in computer vision. However, the complex topology and ambiguous image evidence render this process a challenging task. In this paper, we introduce DeepBranchTracer, a novel method that learns both external image features and internal geometric characteristics to reconstruct curvilinear structures. Firstly, we formulate the curvilinear structures extraction as a geometric attribute estimation problem. Then, a curvilinear structure feature learning network is designed to extract essential branch attributes, including the image features of centerline and boundary, and the geometric features of direction and radius. Finally, utilizing a multi-feature fusion tracing strategy, our model iteratively traces the entire branch by integrating the extracted image and geometric features. We extensively evaluated our model on both 2D and 3D datasets, demonstrating its superior performance over existing segmentation and reconstruction methods in terms of accuracy and continuity.

ChatGPT and other general large language models (LLMs) have achieved remarkable success, but they have also raised concerns about the misuse of AI-generated texts. Existing AI-generated text detection models, such as based on BERT and RoBERTa, are prone to in-domain over-fitting, leading to poor out-of-domain (OOD) detection performance. In this paper, we first collected Chinese text responses generated by human experts and 9 types of LLMs, for which to multiple domains questions, and further created a dataset that mixed human-written sentences and sentences polished by LLMs. We then proposed LLM-Detector, a novel method for both document-level and sentence-level text detection through Instruction Tuning of LLMs. Our method leverages the wealth of knowledge LLMs acquire during pre-training, enabling them to detect the text they generate. Instruction tuning aligns the model's responses with the user's expected text detection tasks. Experimental results show that previous methods struggle with sentence-level AI-generated text detection and OOD detection. In contrast, our proposed method not only significantly outperforms baseline methods in both sentence-level and document-level text detection but also demonstrates strong generalization capabilities. Furthermore, since LLM-Detector is trained based on open-source LLMs, it is easy to customize for deployment.

Popular guidance for denoising diffusion probabilistic model (DDPM) linearly combines distinct conditional models together to provide enhanced control over samples. However, this approach overlooks nonlinear effects that become significant when guidance scale is large. To address this issue, we propose characteristic guidance, a guidance method that provides first-principle non-linear correction for classifier-free guidance. Such correction forces the guided DDPMs to respect the Fokker-Planck (FP) equation of diffusion process, in a way that is training-free and compatible with existing sampling methods. Experiments show that characteristic guidance enhances semantic characteristics of prompts and mitigate irregularities in image generation, proving effective in diverse applications ranging from simulating magnet phase transitions to latent space sampling.

Unsupervised learning has gained prominence in the big data era, offering a means to extract valuable insights from unlabeled datasets. Deep clustering has emerged as an important unsupervised category, aiming to exploit the non-linear mapping capabilities of neural networks in order to enhance clustering performance. The majority of deep clustering literature focuses on minimizing the inner-cluster variability in some embedded space while keeping the learned representation consistent with the original high-dimensional dataset. In this work, we propose soft silhoutte, a probabilistic formulation of the silhouette coefficient. Soft silhouette rewards compact and distinctly separated clustering solutions like the conventional silhouette coefficient. When optimized within a deep clustering framework, soft silhouette guides the learned representations towards forming compact and well-separated clusters. In addition, we introduce an autoencoder-based deep learning architecture that is suitable for optimizing the soft silhouette objective function. The proposed deep clustering method has been tested and compared with several well-studied deep clustering methods on various benchmark datasets, yielding very satisfactory clustering results.

Propagating state distributions through a generic, uncertain nonlinear dynamical model is known to be intractable and usually begets numerical or analytical approximations. We introduce a method for state prediction, called the Expansion-Compression Unscented Transform, and use it to solve a class of online policy optimization problems. Our proposed algorithm propagates a finite number of sigma points through a state-dependent distribution, which dictates an increase in the number of sigma points at each time step to represent the resulting distribution; this is what we call the expansion operation. To keep the algorithm scalable, we augment the expansion operation with a compression operation based on moment matching, thereby keeping the number of sigma points constant across predictions over multiple time steps. Its performance is empirically shown to be comparable to Monte Carlo but at a much lower computational cost. Under state and control input constraints, the state prediction is subsequently used in tandem with a proposed variant of constrained gradient-descent for online update of policy parameters in a receding horizon fashion. The framework is implemented as a differentiable computational graph for policy training. We showcase our framework for a quadrotor stabilization task as part of a benchmark comparison in safe-control-gym and for optimizing the parameters of a Control Barrier Function based controller in a leader-follower problem.

Transformer architectures have facilitated the development of large-scale and general-purpose sequence models for prediction tasks in natural language processing and computer vision, e.g., GPT-3 and Swin Transformer. Although originally designed for prediction problems, it is natural to inquire about their suitability for sequential decision-making and reinforcement learning problems, which are typically beset by long-standing issues involving sample efficiency, credit assignment, and partial observability. In recent years, sequence models, especially the Transformer, have attracted increasing interest in the RL communities, spawning numerous approaches with notable effectiveness and generalizability. This survey presents a comprehensive overview of recent works aimed at solving sequential decision-making tasks with sequence models such as the Transformer, by discussing the connection between sequential decision-making and sequence modeling, and categorizing them based on the way they utilize the Transformer. Moreover, this paper puts forth various potential avenues for future research intending to improve the effectiveness of large sequence models for sequential decision-making, encompassing theoretical foundations, network architectures, algorithms, and efficient training systems. As this article has been accepted by the Frontiers of Computer Science, here is an early version, and the most up-to-date version can be found at //journal.hep.com.cn/fcs/EN/10.1007/s11704-023-2689-5

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

北京阿比特科技有限公司