亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Single-particle traces of the diffusive motion of molecules, cells, or animals are by-now routinely measured, similar to stochastic records of stock prices or weather data. Deciphering the stochastic mechanism behind the recorded dynamics is vital in understanding the observed systems. Typically, the task is to decipher the exact type of diffusion and/or to determine system parameters. The tools used in this endeavor are currently revolutionized by modern machine-learning techniques. In this Perspective we provide an overview over recently introduced methods in machine-learning for diffusive time series, most notably, those successfully competing in the Anomalous-Diffusion-Challenge. As such methods are often criticized for their lack of interpretability, we focus on means to include uncertainty estimates and feature-based approaches, both improving interpretability and providing concrete insight into the learning process of the machine. We expand the discussion by examining predictions on different out-of-distribution data. We also comment on expected future developments.

相關內容

Assistive devices, such as exoskeletons and prostheses, have revolutionized the field of rehabilitation and mobility assistance. Efficiently detecting transitions between different activities, such as walking, stair ascending and descending, and sitting, is crucial for ensuring adaptive control and enhancing user experience. We here present an approach for real-time transition detection, aimed at optimizing the processing-time performance. By establishing activity-specific threshold values through trained machine learning models, we effectively distinguish motion patterns and we identify transition moments between locomotion modes. This threshold-based method improves real-time embedded processing time performance by up to 11 times compared to machine learning approaches. The efficacy of the developed finite-state machine is validated using data collected from three different measurement systems. Moreover, experiments with healthy participants were conducted on an active pelvis orthosis to validate the robustness and reliability of our approach. The proposed algorithm achieved high accuracy in detecting transitions between activities. These promising results show the robustness and reliability of the method, reinforcing its potential for integration into practical applications.

We present an incomplete proof synthesis method for the Calculus of Constructions which is always terminating and a complete Vernacular for the Calculus of Constructions based on this method.

We provide a comprehensive theory of multiple variants of ordinal multidimensional scaling, including external and internal unfolding. We do so in the continuous model of Shepard (1966).

Medical image segmentation aims to delineate the anatomical or pathological structures of interest, playing a crucial role in clinical diagnosis. A substantial amount of high-quality annotated data is crucial for constructing high-precision deep segmentation models. However, medical annotation is highly cumbersome and time-consuming, especially for medical videos or 3D volumes, due to the huge labeling space and poor inter-frame consistency. Recently, a fundamental task named Moving Object Segmentation (MOS) has made significant advancements in natural images. Its objective is to delineate moving objects from the background within image sequences, requiring only minimal annotations. In this paper, we propose the first foundation model, named iMOS, for MOS in medical images. Extensive experiments on a large multi-modal medical dataset validate the effectiveness of the proposed iMOS. Specifically, with the annotation of only a small number of images in the sequence, iMOS can achieve satisfactory tracking and segmentation performance of moving objects throughout the entire sequence in bi-directions. We hope that the proposed iMOS can help accelerate the annotation speed of experts, and boost the development of medical foundation models.

Diagnosing lung inflammation, particularly pneumonia, is of paramount importance for effectively treating and managing the disease. Pneumonia is a common respiratory infection caused by bacteria, viruses, or fungi and can indiscriminately affect people of all ages. As highlighted by the World Health Organization (WHO), this prevalent disease tragically accounts for a substantial 15% of global mortality in children under five years of age. This article presents a comparative study of the Inception-ResNet deep learning model's performance in diagnosing pneumonia from chest radiographs. The study leverages Mendeleys chest X-ray images dataset, which contains 5856 2D images, including both Viral and Bacterial Pneumonia X-ray images. The Inception-ResNet model is compared with seven other state-of-the-art convolutional neural networks (CNNs), and the experimental results demonstrate the Inception-ResNet model's superiority in extracting essential features and saving computation runtime. Furthermore, we examine the impact of transfer learning with fine-tuning in improving the performance of deep convolutional models. This study provides valuable insights into using deep learning models for pneumonia diagnosis and highlights the potential of the Inception-ResNet model in this field. In classification accuracy, Inception-ResNet-V2 showed superior performance compared to other models, including ResNet152V2, MobileNet-V3 (Large and Small), EfficientNetV2 (Large and Small), InceptionV3, and NASNet-Mobile, with substantial margins. It outperformed them by 2.6%, 6.5%, 7.1%, 13%, 16.1%, 3.9%, and 1.6%, respectively, demonstrating its significant advantage in accurate classification.

Musical improvisation, much like spontaneous speech, reveals intricate facets of the improviser's state of mind and emotional character. However, the specific musical components that reveal such individuality remain largely unexplored. Within the framework of brain's statistical learning and predictive processing, this study examined the temporal dynamics of uncertainty and surprise (prediction error) in a piece of musical improvisation. This study employed the HBSL model to analyze a corpus of 456 Jazz improvisations, spanning 1905 to 2009, from 78 distinct Jazz musicians. The results indicated distinctive temporal patterns of surprise and uncertainty, especially in pitch and pitch-rhythm sequences, revealing era-specific features from the early 20th to the 21st centuries. Conversely, rhythm sequences exhibited a consistent degree of uncertainty across eras. Further, the acoustic properties remain unchanged across different periods. These findings highlight the importance of how temporal dynamics of surprise and uncertainty in improvisational music change over periods, profoundly influencing the distinctive methodologies artists adopt for improvisation in each era. Further, it is suggested that the development of improvisational music can be attributed to the brain's adaptive statistical learning mechanisms, which constantly refine internal models to mirror the cultural and emotional nuances of their respective epochs. This study unravels the evolutionary trajectory of improvisational music and highlights the nuanced shifts artists employ to resonate with the cultural and emotional landscapes of their times.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司