We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where thermal fluctuations are modeled by a random magnetic field whose variance is proportional to the temperature. By rescaling the temperature proportionally to the computational cell size $\Delta x$ ($T \to T\,\Delta x/a_{\text{eff}}$, where $a_{\text{eff}}$ is the lattice constant) [M. B. Hahn, J. Phys. Comm., 3:075009, 2019], we obtain Curie temperatures $T_{\text{C}}$ that are in line with the experimental values for cobalt, iron and nickel. For finite-sized objects such as nanowires (1D) and nanolayers (2D), the Curie temperature varies with the smallest size $d$ of the system. We show that the difference between the computed finite-size $T_{\text{C}}$ and the bulk $T_{\text{C}}$ follows a power-law of the type: $(\xi_0/d)^\lambda$, where $\xi_0$ is the correlation length at zero temperature, and $\lambda$ is a critical exponent. We obtain values of $\xi_0$ in the nanometer range, also in accordance with other simulations and experiments. The computed critical exponent is close to $\lambda=2$ for all considered materials and geometries. This is the expected result for a mean-field approach, but slightly larger than the values observed experimentally.
We prove explicit uniform two-sided bounds for the phase functions of Bessel functions and of their derivatives. As a consequence, we obtain new enclosures for the zeros of Bessel functions and their derivatives in terms of inverse values of some elementary functions. These bounds are valid, with a few exceptions, for all zeros and all Bessel functions with non-negative indices. We provide numerical evidence showing that our bounds either improve or closely match the best previously known ones.
We propose a new randomized method for solving systems of nonlinear equations, which can find sparse solutions or solutions under certain simple constraints. The scheme only takes gradients of component functions and uses Bregman projections onto the solution space of a Newton equation. In the special case of euclidean projections, the method is known as nonlinear Kaczmarz method. Furthermore, if the component functions are nonnegative, we are in the setting of optimization under the interpolation assumption and the method reduces to SGD with the recently proposed stochastic Polyak step size. For general Bregman projections, our method is a stochastic mirror descent with a novel adaptive step size. We prove that in the convex setting each iteration of our method results in a smaller Bregman distance to exact solutions as compared to the standard Polyak step. Our generalization to Bregman projections comes with the price that a convex one-dimensional optimization problem needs to be solved in each iteration. This can typically be done with globalized Newton iterations. Convergence is proved in two classical settings of nonlinearity: for convex nonnegative functions and locally for functions which fulfill the tangential cone condition. Finally, we show examples in which the proposed method outperforms similar methods with the same memory requirements.
Numerical simulations of high energy-density experiments require equation of state (EOS) models that relate a material's thermodynamic state variables -- specifically pressure, volume/density, energy, and temperature. EOS models are typically constructed using a semi-empirical parametric methodology, which assumes a physics-informed functional form with many tunable parameters calibrated using experimental/simulation data. Since there are inherent uncertainties in the calibration data (parametric uncertainty) and the assumed functional EOS form (model uncertainty), it is essential to perform uncertainty quantification (UQ) to improve confidence in the EOS predictions. Model uncertainty is challenging for UQ studies since it requires exploring the space of all possible physically consistent functional forms. Thus, it is often neglected in favor of parametric uncertainty, which is easier to quantify without violating thermodynamic laws. This work presents a data-driven machine learning approach to constructing EOS models that naturally captures model uncertainty while satisfying the necessary thermodynamic consistency and stability constraints. We propose a novel framework based on physics-informed Gaussian process regression (GPR) that automatically captures total uncertainty in the EOS and can be jointly trained on both simulation and experimental data sources. A GPR model for the shock Hugoniot is derived and its uncertainties are quantified using the proposed framework. We apply the proposed model to learn the EOS for the diamond solid state of carbon, using both density functional theory data and experimental shock Hugoniot data to train the model and show that the prediction uncertainty reduces by considering the thermodynamic constraints.
We analyze the Schr\"odingerisation method for quantum simulation of a general class of non-unitary dynamics with inhomogeneous source terms. The Schr\"odingerisation technique, introduced in \cite{JLY22a,JLY23}, transforms any linear ordinary and partial differential equations with non-unitary dynamics into a system under unitary dynamics via a warped phase transition that maps the equations into a higher dimension, making them suitable for quantum simulation. This technique can also be applied to these equations with inhomogeneous terms modeling source or forcing terms or boundary and interface conditions, and discrete dynamical systems such as iterative methods in numerical linear algebra, through extra equations in the system. Difficulty airses with the presense of inhomogeneous terms since it can change the stability of the original system. In this paper, we systematically study--both theoretically and numerically--the important issue of recovering the original variables from the Schr\"odingerized equations, even when the evolution operator contains unstable modes. We show that even with unstable modes, one can still construct a stable scheme, yet to recover the original variable one needs to use suitable data in the extended space. We analyze and compare both the discrete and continuous Fourier transforms used in the extended dimension, and derive corresponding error estimates, which allows one to use the more appropriate transform for specific equations. We also provide a smoother initialization for the Schrod\"odingerized system to gain higher order accuracy in the extended space. We homogenize the inhomogeneous terms with a stretch transformation, making it easier to recover the original variable. Our recovering technique also provides a simple and generic framework to solve general ill-posed problems in a computationally stable way.
The expansion of a polytope is an important parameter for the analysis of the random walks on its graph. A conjecture of Mihai and Vazirani states that all $0/1$-polytopes have expansion at least 1. We show that the generalization to half-integral polytopes does not hold by constructing $d$-dimensional half-integral polytopes whose expansion decreases exponentially fast with $d$. We also prove that the expansion of half-integral zonotopes is uniformly bounded away from $0$. As an intermediate result, we show that half-integral zonotopes are always graphical.
Electromagnetic forming and perforations (EMFP) are complex and innovative high strain rate processes that involve electromagnetic-mechanical interactions for simultaneous metal forming and perforations. Instead of spending costly resources on repetitive experimental work, a properly designed numerical model can be effectively used for detailed analysis and characterization of the complex process. A coupled finite element (FE) model is considered for analyzing the multi-physics of the EMFP because of its robustness and improved accuracy. In this work, a detailed understanding of the process has been achieved by numerically simulating forming and perforations of Al6061-T6 tube for 12 holes and 36 holes with two different punches, i.e., pointed and concave punches using Ls-Dyna software. In order to shed light on EMFP physics, a comparison between experimental data and the formulated numerical simulation has been carried out to compare the average hole diameter and the number of perforated holes, for different types of punches and a range of discharge energies. The simulated results show acceptable agreement with experimental studies, with maximum deviations being less than or equal to 6%, which clearly illustrates the efficacy and capability of the developed coupled Multi-physics FE model.
Genome assembly is a prominent problem studied in bioinformatics, which computes the source string using a set of its overlapping substrings. Classically, genome assembly uses assembly graphs built using this set of substrings to compute the source string efficiently, having a tradeoff between scalability and avoiding information loss. The scalable de Bruijn graphs come at the price of losing crucial overlap information. The complete overlap information is stored in overlap graphs using quadratic space. Hierarchical overlap graphs [IPL20] (HOG) overcome these limitations, avoiding information loss despite using linear space. After a series of suboptimal improvements, Khan and Park et al. simultaneously presented two optimal algorithms [CPM2021], where only the former was seemingly practical. We empirically analyze all the practical algorithms for computing HOG, where the optimal algorithm [CPM2021] outperforms the previous algorithms as expected, though at the expense of extra memory. However, it uses non-intuitive approach and non-trivial data structures. We present arguably the most intuitive algorithm, using only elementary arrays, which is also optimal. Our algorithm empirically proves even better for both time and memory over all the algorithms, highlighting its significance in both theory and practice. We further explore the applications of hierarchical overlap graphs to solve various forms of suffix-prefix queries on a set of strings. Loukides et al. [CPM2023] recently presented state-of-the-art algorithms for these queries. However, these algorithms require complex black-box data structures and are seemingly impractical. Our algorithms, despite failing to match the state-of-the-art algorithms theoretically, answer different queries ranging from 0.01-100 milliseconds for a data set having around a billion characters.
For the stochastic heat equation with multiplicative noise we consider the problem of estimating the diffusivity parameter in front of the Laplace operator. Based on local observations in space, we first study an estimator that was derived for additive noise. A stable central limit theorem shows that this estimator is consistent and asymptotically mixed normal. By taking into account the quadratic variation, we propose two new estimators. Their limiting distributions exhibit a smaller (conditional) variance and the last estimator also works for vanishing noise levels. The proofs are based on local approximation results to overcome the intricate nonlinearities and on a stable central limit theorem for stochastic integrals with respect to cylindrical Brownian motion. Simulation results illustrate the theoretical findings.
The scale function holds significant importance within the fluctuation theory of Levy processes, particularly in addressing exit problems. However, its definition is established through the Laplace transform, thereby lacking explicit representations in general. This paper introduces a novel series representation for this scale function, employing Laguerre polynomials to construct a uniformly convergent approximate sequence. Additionally, we derive statistical inference based on specific discrete observations, presenting estimators of scale functions that are asymptotically normal.
This paper is concerned with an inverse wave-number-dependent/frequency-dependent source problem for the Helmholtz equation. In d-dimensions (d = 2,3), the unknown source term is supposed to be compactly supported in spatial variables but independent on x_d. The dependance of the source function on k is supposed to be unknown. Based on the Dirichlet-Laplacian method and the Fourier-Transform method, we develop two effcient non-iterative numerical algorithms to recover the wave-number-dependent source. Uniqueness and increasing stability analysis are proved. Numerical experiments are conducted to illustrate the effctiveness and effciency of the proposed method.