亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Vector embeddings have become ubiquitous tools for many language-related tasks. A leading embedding model is OpenAI's text-ada-002 which can embed approximately 6,000 words into a 1,536-dimensional vector. While powerful, text-ada-002 is not open source and is only available via API. We trained a simple neural network to convert open-source 768-dimensional MPNet embeddings into text-ada-002 embeddings. We compiled a subset of 50,000 online food reviews. We calculated MPNet and text-ada-002 embeddings for each review and trained a simple neural network to for 75 epochs. The neural network was designed to predict the corresponding text-ada-002 embedding for a given MPNET embedding. Our model achieved an average cosine similarity of 0.932 on 10,000 unseen reviews in our held-out test dataset. We manually assessed the quality of our predicted embeddings for vector search over text-ada-002-embedded reviews. While not as good as real text-ada-002 embeddings, predicted embeddings were able to retrieve highly relevant reviews. Our final model, Vec2Vec, is lightweight (<80 MB) and fast. Future steps include training a neural network with a more sophisticated architecture and a larger dataset of paired embeddings to achieve greater performance. The ability to convert between and align embedding spaces may be helpful for interoperability, limiting dependence on proprietary models, protecting data privacy, reducing costs, and offline operations.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網(wang)絡會(hui)議。 Publisher:IFIP。 SIT:

Large language models (LLMs) such as GPT-4, PaLM, and Llama have significantly propelled the generation of AI-crafted text. With rising concerns about their potential misuse, there is a pressing need for AI-generated-text forensics. Neural authorship attribution is a forensic effort, seeking to trace AI-generated text back to its originating LLM. The LLM landscape can be divided into two primary categories: proprietary and open-source. In this work, we delve into these emerging categories of LLMs, focusing on the nuances of neural authorship attribution. To enrich our understanding, we carry out an empirical analysis of LLM writing signatures, highlighting the contrasts between proprietary and open-source models, and scrutinizing variations within each group. By integrating stylometric features across lexical, syntactic, and structural aspects of language, we explore their potential to yield interpretable results and augment pre-trained language model-based classifiers utilized in neural authorship attribution. Our findings, based on a range of state-of-the-art LLMs, provide empirical insights into neural authorship attribution, paving the way for future investigations aimed at mitigating the threats posed by AI-generated misinformation.

Recently, transformers are trending as replacements for CNNs in vision tasks, including compression. This trend compels us to question the inherent limitations of CNNs compared to transformers and to explore if CNNs can be enhanced to achieve the same or even better performance than transformers. We want to design a pure CNN based model for compression as most devices are optimized for CNNs well. In our analysis, we find that the key strengths of transformers lie in their dynamic weights and large receptive fields. To enable CNNs with such properties, we propose a novel transform module with large receptive filed learning and self-conditioned adaptability for learned image compression, named SLIC. Specifically, we enlarge the receptive field of depth-wise convolution with suitable complexity and generate the weights according to given conditions. In addition, we also investigate the self-conditioned factor for channels. To prove the effectiveness of our proposed transform module, we equip it with existing entropy models ChARM, SCCTX, and SWAtten and we obtain models SLIC-ChARM, SLIC-SCCTX, and SLIC-SWAtten. Extensive experiments demonstrate our SLIC-ChARM, SLIC-SCCTX, and SLIC-SWAtten have significant improvements over corresponding baselines and achieve SOTA performances with suitable complexity on 5 test datasets (Kodak, Tecnick, CLIC 20, CLIC 21, JPEGAI). Code will be available at //github.com/JiangWeibeta/SLIC.

There is an emerging effort to combine the two popular 3D frameworks using Multi-View Stereo (MVS) and Neural Implicit Surfaces (NIS) with a specific focus on the few-shot / sparse view setting. In this paper, we introduce a novel integration scheme that combines the multi-view stereo with neural signed distance function representations, which potentially overcomes the limitations of both methods. MVS uses per-view depth estimation and cross-view fusion to generate accurate surfaces, while NIS relies on a common coordinate volume. Based on this strategy, we propose to construct per-view cost frustum for finer geometry estimation, and then fuse cross-view frustums and estimate the implicit signed distance functions to tackle artifacts that are due to noise and holes in the produced surface reconstruction. We further apply a cascade frustum fusion strategy to effectively captures global-local information and structural consistency. Finally, we apply cascade sampling and a pseudo-geometric loss to foster stronger integration between the two architectures. Extensive experiments demonstrate that our method reconstructs robust surfaces and outperforms existing state-of-the-art methods.

Foundation language models obtain the instruction-following ability through supervised fine-tuning (SFT). Diversity and complexity are considered critical factors of a successful SFT dataset, while their definitions remain obscure and lack quantitative analyses. In this work, we propose InsTag, an open-set fine-grained tagger, to tag samples within SFT datasets based on semantics and intentions and define instruction diversity and complexity regarding tags. We obtain 6.6K tags to describe comprehensive user queries. Then we analyze popular open-sourced SFT datasets and find that the model ability grows with more diverse and complex data. Based on this observation, we propose a data selector based on InsTag to select 6K diverse and complex samples from open-source datasets and fine-tune models on InsTag-selected data. The resulting models, TagLM, outperform open-source models based on considerably larger SFT data evaluated by MT-Bench, echoing the importance of query diversity and complexity. We open-source InsTag in //github.com/OFA-Sys/InsTag.

We present CLASSLA-Stanza, a pipeline for automatic linguistic annotation of the South Slavic languages, which is based on the Stanza natural language processing pipeline. We describe the main improvements in CLASSLA-Stanza with respect to Stanza, and give a detailed description of the model training process for the latest 2.1 release of the pipeline. We also report performance scores produced by the pipeline for different languages and varieties. CLASSLA-Stanza exhibits consistently high performance across all the supported languages and outperforms or expands its parent pipeline Stanza at all the supported tasks. We also present the pipeline's new functionality enabling efficient processing of web data and the reasons that led to its implementation.

The Transformer-based encoder-decoder framework is becoming popular in scene text recognition, largely because it naturally integrates recognition clues from both visual and semantic domains. However, recent studies show that the two kinds of clues are not always well registered and therefore, feature and character might be misaligned in difficult text (e.g., with a rare shape). As a result, constraints such as character position are introduced to alleviate this problem. Despite certain success, visual and semantic are still separately modeled and they are merely loosely associated. In this paper, we propose a novel module called Multi-Domain Character Distance Perception (MDCDP) to establish a visually and semantically related position embedding. MDCDP uses the position embedding to query both visual and semantic features following the cross-attention mechanism. The two kinds of clues are fused into the position branch, generating a content-aware embedding that well perceives character spacing and orientation variants, character semantic affinities, and clues tying the two kinds of information. They are summarized as the multi-domain character distance. We develop CDistNet that stacks multiple MDCDPs to guide a gradually precise distance modeling. Thus, the feature-character alignment is well built even various recognition difficulties are presented. We verify CDistNet on ten challenging public datasets and two series of augmented datasets created by ourselves. The experiments demonstrate that CDistNet performs highly competitively. It not only ranks top-tier in standard benchmarks, but also outperforms recent popular methods by obvious margins on real and augmented datasets presenting severe text deformation, poor linguistic support, and rare character layouts. Code is available at //github.com/simplify23/CDistNet.

Large language models (LLMs), such as ChatGPT, have demonstrated outstanding performance in various fields, particularly in natural language understanding and generation tasks. In complex application scenarios, users tend to engage in multi-turn conversations with ChatGPT to keep contextual information and obtain comprehensive responses. However, human forgetting and model contextual forgetting remain prominent issues in multi-turn conversation scenarios, which challenge the users' conversation comprehension and contextual continuity for ChatGPT. To address these challenges, we propose an interactive conversation visualization system called C5, which includes Global View, Topic View, and Context-associated Q\&A View. The Global View uses the GitLog diagram metaphor to represent the conversation structure, presenting the trend of conversation evolution and supporting the exploration of locally salient features. The Topic View is designed to display all the question and answer nodes and their relationships within a topic using the structure of a knowledge graph, thereby display the relevance and evolution of conversations. The Context-associated Q\&A View consists of three linked views, which allow users to explore individual conversations deeply while providing specific contextual information when posing questions. The usefulness and effectiveness of C5 were evaluated through a case study and a user study.

Inspired by the recent success of large language models (LLMs) like ChatGPT, researchers start to explore the adoption of LLMs for agile hardware design, such as generating design RTL based on natural-language instructions. However, in existing works, their target designs are all relatively simple and in a small scale, and proposed by the authors themselves, making a fair comparison among different LLM solutions challenging. In addition, many prior works only focus on the design correctness, without evaluating the design qualities of generated design RTL. In this work, we propose an open-source benchmark named RTLLM, for generating design RTL with natural language instructions. To systematically evaluate the auto-generated design RTL, we summarized three progressive goals, named syntax goal, functionality goal, and design quality goal. This benchmark can automatically provide a quantitative evaluation of any given LLM-based solution. Furthermore, we propose an easy-to-use yet surprisingly effective prompt engineering technique named self-planning, which proves to significantly boost the performance of GPT-3.5 in our proposed benchmark.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

北京阿比特科技有限公司