亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Target-oriented dialogue systems, designed to proactively steer conversations toward predefined targets or accomplish specific system-side goals, are an exciting area in conversational AI. In this work, by formulating a <dialogue act, topic> pair as the conversation target, we explore a novel problem of personalized target-oriented dialogue by considering personalization during the target accomplishment process. However, there remains an emergent need for high-quality datasets, and building one from scratch requires tremendous human effort. To address this, we propose an automatic dataset curation framework using a role-playing approach. Based on this framework, we construct a large-scale personalized target-oriented dialogue dataset, TopDial, which comprises about 18K multi-turn dialogues. The experimental results show that this dataset is of high quality and could contribute to exploring personalized target-oriented dialogue.

相關內容

Transformer-based models, such as BERT and GPT, have been widely adopted in natural language processing (NLP) due to their exceptional performance. However, recent studies show their vulnerability to textual adversarial attacks where the model's output can be misled by intentionally manipulating the text inputs. Despite various methods that have been proposed to enhance the model's robustness and mitigate this vulnerability, many require heavy consumption resources (e.g., adversarial training) or only provide limited protection (e.g., defensive dropout). In this paper, we propose a novel method called dynamic attention, tailored for the transformer architecture, to enhance the inherent robustness of the model itself against various adversarial attacks. Our method requires no downstream task knowledge and does not incur additional costs. The proposed dynamic attention consists of two modules: (I) attention rectification, which masks or weakens the attention value of the chosen tokens, and (ii) dynamic modeling, which dynamically builds the set of candidate tokens. Extensive experiments demonstrate that dynamic attention significantly mitigates the impact of adversarial attacks, improving up to 33\% better performance than previous methods against widely-used adversarial attacks. The model-level design of dynamic attention enables it to be easily combined with other defense methods (e.g., adversarial training) to further enhance the model's robustness. Furthermore, we demonstrate that dynamic attention preserves the state-of-the-art robustness space of the original model compared to other dynamic modeling methods.

The advent of large language models, enabling flexibility through instruction-driven approaches, has revolutionized many traditional generative tasks, but large models for 3D data, particularly in comprehensively handling 3D shapes with other modalities, are still under-explored. By achieving instruction-based shape generations, versatile multimodal generative shape models can significantly benefit various fields like 3D virtual construction and network-aided design. In this work, we present ShapeGPT, a shape-included multi-modal framework to leverage strong pre-trained language models to address multiple shape-relevant tasks. Specifically, ShapeGPT employs a word-sentence-paragraph framework to discretize continuous shapes into shape words, further assembles these words for shape sentences, as well as integrates shape with instructional text for multi-modal paragraphs. To learn this shape-language model, we use a three-stage training scheme, including shape representation, multimodal alignment, and instruction-based generation, to align shape-language codebooks and learn the intricate correlations among these modalities. Extensive experiments demonstrate that ShapeGPT achieves comparable performance across shape-relevant tasks, including text-to-shape, shape-to-text, shape completion, and shape editing.

We investigate the role of various demonstration components in the in-context learning (ICL) performance of large language models (LLMs). Specifically, we explore the impacts of ground-truth labels, input distribution, and complementary explanations, particularly when these are altered or perturbed. We build on previous work, which offers mixed findings on how these elements influence ICL. To probe these questions, we employ explainable NLP (XNLP) methods and utilize saliency maps of contrastive demonstrations for both qualitative and quantitative analysis. Our findings reveal that flipping ground-truth labels significantly affects the saliency, though it's more noticeable in larger LLMs. Our analysis of the input distribution at a granular level reveals that changing sentiment-indicative terms in a sentiment analysis task to neutral ones does not have as substantial an impact as altering ground-truth labels. Finally, we find that the effectiveness of complementary explanations in boosting ICL performance is task-dependent, with limited benefits seen in sentiment analysis tasks compared to symbolic reasoning tasks. These insights are critical for understanding the functionality of LLMs and guiding the development of effective demonstrations, which is increasingly relevant in light of the growing use of LLMs in applications such as ChatGPT. Our research code is publicly available at //github.com/paihengxu/XICL.

Graphical and sparse (inverse) covariance models have found widespread use in modern sample-starved high dimensional applications. A part of their wide appeal stems from the significantly low sample sizes required for the existence of estimators, especially in comparison with the classical full covariance model. For undirected Gaussian graphical models, the minimum sample size required for the existence of maximum likelihood estimators had been an open question for almost half a century, and has been recently settled. The very same question for pseudo-likelihood estimators has remained unsolved ever since their introduction in the '70s. Pseudo-likelihood estimators have recently received renewed attention as they impose fewer restrictive assumptions and have better computational tractability, improved statistical performance, and appropriateness in modern high dimensional applications, thus renewing interest in this longstanding problem. In this paper, we undertake a comprehensive study of this open problem within the context of the two classes of pseudo-likelihood methods proposed in the literature. We provide a precise answer to this question for both pseudo-likelihood approaches and relate the corresponding solutions to their Gaussian counterpart.

Benchmarking involves designing scientific test methods, tools, and frameworks to quantitatively and comparably assess specific performance indicators of certain test subjects. With the development of artificial intelligence, AI benchmarking datasets such as ImageNet and DataPerf have gradually become consensus standards in both academic and industrial fields. However, constructing a benchmarking framework remains a significant challenge in the open-source domain due to the diverse range of data types, the wide array of research issues, and the intricate nature of collaboration networks. This paper introduces OpenPerf, a benchmarking framework designed for the sustainable development of the open-source ecosystem. This framework defines 9 task benchmarking tasks in the open-source research, encompassing 3 data types: time series, text, and graphics, and addresses 6 research problems including regression, classification, recommendation, ranking, network building, and anomaly detection. Based on the above tasks, we implemented 3 data science task benchmarks, 2 index-based benchmarks, and 1 standard benchmark. Notably, the index-based benchmarks have been adopted by the China Electronics Standardization Institute as evaluation criteria for open-source community governance. Additionally, we have developed a comprehensive toolkit for OpenPerf, which not only offers robust data management, tool integration, and user interface capabilities but also adopts a Benchmarking-as-a-Service (BaaS) model to serve academic institutions, industries, and foundations. Through its application in renowned companies and institutions such as Alibaba, Ant Group, and East China Normal University, we have validated OpenPerf's pivotal role in the healthy evolution of the open-source ecosystem.

Microservices are increasingly used in modern applications, leading to a growing need for effective service composition solutions. However, we argue that traditional API-centric composition mechanisms (e.g., RPC, REST, and Pub/Sub) hamper the modularity of microservices. These mechanisms introduce rigid code-level coupling, scatter composition logic, and hinder visibility into cross-service data exchanges. Ultimately, these limitations complicate the maintenance and evolution of microservice-based applications. In response, we propose a rethinking of service composition and present Knactor, a new data-centric composition framework to restore the modularity that microservices were intended to offer. Knactor decouples service composition from service development, allowing composition to be implemented as explicit data exchanges among multiple services. Our initial case study suggests that Knactor simplifies service composition and creates new opportunities for optimizations.

As a recent development, task-oriented dialogues (TODs) have been enriched with chitchat in an effort to make dialogues more diverse and engaging. This enhancement is particularly valuable as TODs are often confined to narrow domains, making the mitigation of repetitive and predictable responses a significant challenge. This paper presents a comparative analysis of three chitchat enhancements, aiming to identify the most effective approach in terms of diversity. Additionally, we quantify the divergence between the added chitchat, the original task-oriented language, and chitchat typically found in chitchat datasets, highlighting the top 20 divergent keywords for each comparison. Our findings drive a discussion on future enhancements for augmenting TODs, emphasizing the importance of grounding dialogues beyond the task to achieve more diverse and natural exchanges.

Independent learners are agents that employ single-agent algorithms in multi-agent systems, intentionally ignoring the effect of other strategic agents. This paper studies mean-field games from a decentralized learning perspective, with two primary objectives: (i) to identify structure that can guide algorithm design, and (ii) to understand the emergent behaviour in systems of independent learners. We study a new model of partially observed mean-field games with finitely many players, local action observability, and a general observation channel for partial observations of the global state. Specific observation channels considered include (a) global observability, (b) local and mean-field observability, (c) local and compressed mean-field observability, and (d) only local observability. We establish conditions under which the control problem of a given agent is equivalent to a fully observed MDP, as well as conditions under which the control problem is equivalent only to a POMDP. Building on the connection to MDPs, we prove the existence of perfect equilibrium among memoryless stationary policies under mean-field observability. Leveraging the connection to POMDPs, we prove convergence of learning iterates obtained by independent learning agents under any of the aforementioned observation channels. We interpret the limiting values as subjective value functions, which an agent believes to be relevant to its control problem. These subjective value functions are then used to propose subjective Q-equilibrium, a new solution concept for partially observed n-player mean-field games, whose existence is proved under mean-field or global observability.We provide a decentralized learning algorithm for partially observed n-player mean-field games, and we show that it drives play to subjective Q-equilibrium by adapting the recently developed theory of satisficing paths to allow for subjectivity.

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司