Estimating the prevalence of a medical condition, or the proportion of the population in which it occurs, is a fundamental problem in healthcare and public health. Accurate estimates of the relative prevalence across groups -- capturing, for example, that a condition affects women more frequently than men -- facilitate effective and equitable health policy which prioritizes groups who are disproportionately affected by a condition. However, it is difficult to estimate relative prevalence when a medical condition is underreported. In this work, we provide a method for accurately estimating the relative prevalence of underreported medical conditions, building upon the positive unlabeled learning framework. We show that under the commonly made covariate shift assumption -- i.e., that the probability of having a disease conditional on symptoms remains constant across groups -- we can recover the relative prevalence, even without restrictive assumptions commonly made in positive unlabeled learning and even if it is impossible to recover the absolute prevalence. We provide a suite of experiments on synthetic and real health data that demonstrate our method's ability to recover the relative prevalence more accurately than do baselines, and the method's robustness to plausible violations of the covariate shift assumption.
The conventional wisdom behind learning deep classification models is to focus on bad-classified examples and ignore well-classified examples that are far from the decision boundary. For instance, when training with cross-entropy loss, examples with higher likelihoods (i.e., well-classified examples) contribute smaller gradients in back-propagation. However, we theoretically show that this common practice hinders representation learning, energy optimization, and the growth of margin. To counteract this deficiency, we propose to reward well-classified examples with additive bonuses to revive their contribution to learning. This counterexample theoretically addresses these three issues. We empirically support this claim by directly verify the theoretical results or through the significant performance improvement with our counterexample on diverse tasks, including image classification, graph classification, and machine translation. Furthermore, this paper shows that because our idea can solve these three issues, we can deal with complex scenarios, such as imbalanced classification, OOD detection, and applications under adversarial attacks. Code is available at: //github.com/lancopku/well-classified-examples-are-underestimated.
An important propertyfor deep neural networks to possess is the ability to perform robust out of distribution detection (OOD) on previously unseen data. This property is essential for safety purposes when deploying models for real world applications. Recent studies show that probabilistic generative models can perform poorly on this task, which is surprising given that they seek to estimate the likelihood of training data. To alleviate this issue, we propose the exponentially tilted Gaussian prior distribution for the Variational Autoencoder (VAE). With this prior, we are able to achieve state-of-the art results using just the negative log likelihood that the VAE naturally assigns, while being orders of magnitude faster than some competitive methods. We also show that our model produces high quality image samples which are more crisp than that of a standard Gaussian VAE. The new prior distribution has a very simple implementation which uses a Kullback Leibler divergence that compares the difference between a latent vector's length, and the radius of a sphere.
A completely randomized experiment allows us to estimate the causal effect by the difference in the averages of the outcome under the treatment and control. But, difference-in-means type estimators behave poorly if the potential outcomes have a heavy-tail, or contain a few extreme observations or outliers. We study an alternative estimator by Rosenbaum that estimates the causal effect by inverting a randomization test using ranks. We study the asymptotic properties of this estimator and develop a framework to compare the efficiencies of different estimators of the treatment effect in the setting of randomized experiments. In particular, we show that the Rosenbaum estimator has variance that is asymptotically, in the worst case, at most about 1.16 times the variance of the difference-in-means estimator, and can be much smaller when the potential outcomes are not light-tailed. We further derive a consistent estimator of the asymptotic standard error for the Rosenbaum estimator which immediately yields a readily computable confidence interval for the treatment effect, thereby alleviating the expensive numerical calculations needed to implement the original proposal of Rosenbaum. Further, we propose a regression adjusted version of the Rosenbaum estimator to incorporate additional covariate information in randomization inference. We prove gain in efficiency by this regression adjustment method under a linear regression model. Finally, we illustrate through simulations that, unlike the difference-in-means based estimators, either unadjusted or regression adjusted, these rank-based estimators are efficient and robust against heavy-tailed distributions, contamination, and various model misspecifications.
Medical applications have benefited from the rapid advancement in computer vision. For patient monitoring in particular, in-bed human posture estimation provides important health-related metrics with potential value in medical condition assessments. Despite great progress in this domain, it remains a challenging task due to substantial ambiguity during occlusions, and the lack of large corpora of manually labeled data for model training, particularly with domains such as thermal infrared imaging which are privacy-preserving, and thus of great interest. Motivated by the effectiveness of self-supervised methods in learning features directly from data, we propose a multi-modal conditional variational autoencoder (MC-VAE) capable of reconstructing features from missing modalities seen during training. This approach is used with HRNet to enable single modality inference for in-bed pose estimation. Through extensive evaluations, we demonstrate that body positions can be effectively recognized from the available modality, achieving on par results with baseline models that are highly dependent on having access to multiple modes at inference time. The proposed framework supports future research towards self-supervised learning that generates a robust model from a single source, and expects it to generalize over many unknown distributions in clinical environments.
Conventional supervised learning methods, especially deep ones, are found to be sensitive to out-of-distribution (OOD) examples, largely because the learned representation mixes the semantic factor with the variation factor due to their domain-specific correlation, while only the semantic factor causes the output. To address the problem, we propose a Causal Semantic Generative model (CSG) based on a causal reasoning so that the two factors are modeled separately, and develop methods for OOD prediction from a single training domain, which is common and challenging. The methods are based on the causal invariance principle, with a novel design for both efficient learning and easy prediction. Theoretically, we prove that under certain conditions, CSG can identify the semantic factor by fitting training data, and this semantic-identification guarantees the boundedness of OOD generalization error and the success of adaptation. Empirical study shows improved OOD performance over prevailing baselines.
The usage of smartphone-collected respiratory sound, trained with deep learning models, for detecting and classifying COVID-19 becomes popular recently. It removes the need for in-person testing procedures especially for rural regions where related medical supplies, experienced workers, and equipment are limited. However, existing sound-based diagnostic approaches are trained in a fully supervised manner, which requires large scale well-labelled data. It is critical to discover new methods to leverage unlabelled respiratory data, which can be obtained more easily. In this paper, we propose a novel self-supervised learning enabled framework for COVID-19 cough classification. A contrastive pre-training phase is introduced to train a Transformer-based feature encoder with unlabelled data. Specifically, we design a random masking mechanism to learn robust representations of respiratory sounds. The pre-trained feature encoder is then fine-tuned in the downstream phase to perform cough classification. In addition, different ensembles with varied random masking rates are also explored in the downstream phase. Through extensive evaluations, we demonstrate that the proposed contrastive pre-training, the random masking mechanism, and the ensemble architecture contribute to improving cough classification performance.
To learn intrinsic low-dimensional structures from high-dimensional data that most discriminate between classes, we propose the principle of Maximal Coding Rate Reduction ($\text{MCR}^2$), an information-theoretic measure that maximizes the coding rate difference between the whole dataset and the sum of each individual class. We clarify its relationships with most existing frameworks such as cross-entropy, information bottleneck, information gain, contractive and contrastive learning, and provide theoretical guarantees for learning diverse and discriminative features. The coding rate can be accurately computed from finite samples of degenerate subspace-like distributions and can learn intrinsic representations in supervised, self-supervised, and unsupervised settings in a unified manner. Empirically, the representations learned using this principle alone are significantly more robust to label corruptions in classification than those using cross-entropy, and can lead to state-of-the-art results in clustering mixed data from self-learned invariant features.
When we humans look at a video of human-object interaction, we can not only infer what is happening but we can even extract actionable information and imitate those interactions. On the other hand, current recognition or geometric approaches lack the physicality of action representation. In this paper, we take a step towards a more physical understanding of actions. We address the problem of inferring contact points and the physical forces from videos of humans interacting with objects. One of the main challenges in tackling this problem is obtaining ground-truth labels for forces. We sidestep this problem by instead using a physics simulator for supervision. Specifically, we use a simulator to predict effects and enforce that estimated forces must lead to the same effect as depicted in the video. Our quantitative and qualitative results show that (a) we can predict meaningful forces from videos whose effects lead to accurate imitation of the motions observed, (b) by jointly optimizing for contact point and force prediction, we can improve the performance on both tasks in comparison to independent training, and (c) we can learn a representation from this model that generalizes to novel objects using few shot examples.
Sufficient supervised information is crucial for any machine learning models to boost performance. However, labeling data is expensive and sometimes difficult to obtain. Active learning is an approach to acquire annotations for data from a human oracle by selecting informative samples with a high probability to enhance performance. In recent emerging studies, a generative adversarial network (GAN) has been integrated with active learning to generate good candidates to be presented to the oracle. In this paper, we propose a novel model that is able to obtain labels for data in a cheaper manner without the need to query an oracle. In the model, a novel reward for each sample is devised to measure the degree of uncertainty, which is obtained from a classifier trained with existing labeled data. This reward is used to guide a conditional GAN to generate informative samples with a higher probability for a certain label. With extensive evaluations, we have confirmed the effectiveness of the model, showing that the generated samples are capable of improving the classification performance in popular image classification tasks.
Importance sampling is one of the most widely used variance reduction strategies in Monte Carlo rendering. In this paper, we propose a novel importance sampling technique that uses a neural network to learn how to sample from a desired density represented by a set of samples. Our approach considers an existing Monte Carlo rendering algorithm as a black box. During a scene-dependent training phase, we learn to generate samples with a desired density in the primary sample space of the rendering algorithm using maximum likelihood estimation. We leverage a recent neural network architecture that was designed to represent real-valued non-volume preserving ('Real NVP') transformations in high dimensional spaces. We use Real NVP to non-linearly warp primary sample space and obtain desired densities. In addition, Real NVP efficiently computes the determinant of the Jacobian of the warp, which is required to implement the change of integration variables implied by the warp. A main advantage of our approach is that it is agnostic of underlying light transport effects, and can be combined with many existing rendering techniques by treating them as a black box. We show that our approach leads to effective variance reduction in several practical scenarios.