亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates a multiuser millimeter-wave (mmWave) uplink system in which each user is equipped with a multi-antenna fluid antenna system (FAS) while the base station (BS) has multiple fixed-position antennas. Our primary objective is to maximize the system capacity by optimizing the transmit covariance matrices and the antenna position vectors of the users jointly. To gain deeper insights, we commence by deriving upper bounds and approximations for the maximum capacity. Then we delve into the capacity maximization problem. Beginning with the simple scenario of a single user equipped with a single-antenna FAS, we reveal that a closed-form optimal solution exists when there are only two propagation paths between the user and the BS. In the case where multiple propagation paths are present, a near-optimal solution can be obtained through a one-dimensional search method. Expanding our focus to multiuser cases, where users are equipped with either single- or multi-antenna FAS, we show that the original capacity maximization problems can be reformulated into distinct rank-one programmings. Then, we propose alternating optimization algorithms to deal with the transformed problems. Simulation results indicate that FAS can improve the capacity of the multiple access (MAC) system greatly, and the proposed algorithms outperform all the benchmarks.

相關內容

This paper investigates the capacity of finite-state channels (FSCs) with feedback. We derive an upper bound on the feedback capacity of FSCs by extending the duality upper bound method from mutual information to the case of directed information. The upper bound is expressed as a multi-letter expression that depends on a test distribution on the sequence of channel outputs. For any FSC, we show that if the test distribution is structured on a $Q$-graph, the upper bound can be formulated as a Markov decision process (MDP) whose state being a belief on the channel state. In the case of FSCs and states that are either unifilar or have a finite memory, the MDP state simplifies to take values in a finite set. Consequently, the MDP consists of a finite number of states, actions, and disturbances. This finite nature of the MDP is of significant importance, as it ensures that dynamic programming algorithms can solve the associated Bellman equation to establish analytical upper bounds, even for channels with large alphabets. We demonstrate the simplicity of computing bounds by establishing the capacity of a broad family of Noisy Output is the State (NOST) channels as a simple closed-form analytical expression. Furthermore, we introduce novel, nearly optimal analytical upper bounds on the capacity of the Noisy Ising channel.

This paper develops a new approach for robot motion planning and control in obstacle-laden environments that is inspired by fundamentals of fluid mechanics. For motion planning, we propose a novel transformation between motion space, with arbitrary obstacles of random sizes and shapes, and an obstacle-free planning space with geodesically-varying distances and constrained transitions. We then obtain robot desired trajectory by A* searching over a uniform grid distributed over the planning space. We show that implementing the A* search over the planning space can generate shorter paths when compared to the existing A* searching over the motion space. For trajectory tracking, we propose an MPC-based trajectory tracking control, with linear equality and inequality safety constraints, enforcing the safety requirements of planning and control.

Emerging reconfigurable optical communication technologies allow to enhance datacenter topologies with demand-aware links optimized towards traffic patterns. This paper studies the algorithmic problem of jointly optimizing topology and routing in such demand-aware networks to minimize congestion, along two dimensions: (1) splittable or unsplittable flows, and (2) whether routing is segregated, i.e., whether routes can or cannot combine both demand-aware and demand-oblivious (static) links. For splittable and segregated routing, we show that the problem is generally $2$-approximable, but APX-hard even for uniform demands induced by a bipartite demand graph. For unsplittable and segregated routing, we establish upper and lower bounds of $O\left(\log m/ \log\log m \right)$ and $\Omega\left(\log m/ \log\log m \right)$, respectively, for polynomial-time approximation algorithms, where $m$ is the number of static links. We further reveal that under un-/splittable and non-segregated routing, even for demands of a single source (resp., destination), the problem cannot be approximated better than $\Omega\left(\frac{c_{\max}}{c_{\min}} \right)$ unless P=NP, where $c_{\max}$ (resp., $c_{\min}$) denotes the maximum (resp., minimum) capacity. It remains NP-hard for uniform capacities, but is tractable for a single commodity and uniform capacities. Our trace-driven simulations show a significant reduction in network congestion compared to existing solutions.

Clarifying user's information needs is an essential component of modern search systems. While most of the approaches for constructing clarifying prompts rely on query facets, the impact of the quality of the facets is relatively unexplored. In this work, we concentrate on facet quality through the notion of facet coherency and assess its importance for overall usefulness for clarification in search. We find that existing evaluation procedures do not account for facet coherency, as evident by the poor correlation of coherency with automated metrics. Moreover, we propose a coherency classifier and assess the prevalence of incoherent facets in a well-established dataset on clarification. Our findings can serve as motivation for future work on the topic.

In today's data-rich environment, recommender systems play a crucial role in decision support systems. They provide to users personalized recommendations and explanations about these recommendations. Embedding-based models, despite their widespread use, often suffer from a lack of interpretability, which can undermine trust and user engagement. This paper presents an approach that combines embedding-based and semantic-based models to generate post-hoc explanations in recommender systems, leveraging ontology-based knowledge graphs to improve interpretability and explainability. By organizing data within a structured framework, ontologies enable the modeling of intricate relationships between entities, which is essential for generating explanations. By combining embedding-based and semantic based models for post-hoc explanations in recommender systems, the framework we defined aims at producing meaningful and easy-to-understand explanations, enhancing user trust and satisfaction, and potentially promoting the adoption of recommender systems across the e-commerce sector.

This paper addresses the challenges of mobile user requirements in shadowing and multi-fading environments, focusing on the Downlink (DL) radio node selection based on Uplink (UL) channel estimation. One of the key issues tackled in this research is the prediction performance in scenarios where estimated channels are integrated. An adaptive deep learning approach is proposed to improve performance, offering a compelling alternative to traditional interpolation techniques for air-to-ground link selection on demand. Moreover, our study considers a 3D channel model, which provides a more realistic and accurate representation than 2D models, particularly in the context of 3D network node distributions. This consideration becomes crucial in addressing the complex multipath fading effects within geometric stochastic 3D 3GPP channel models in urban environments. Furthermore, our research emphasises the need for adaptive prediction mechanisms that carefully balance the trade-off between DL link forecasted frequency response accuracy and the complexity requirements associated with estimation and prediction. This paper contributes to advancing 3D radio resource management by addressing these challenges, enabling more efficient and reliable communication for energy-constrained flying network nodes in dynamic environments.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

This paper proposes a recommender system to alleviate the cold-start problem that can estimate user preferences based on only a small number of items. To identify a user's preference in the cold state, existing recommender systems, such as Netflix, initially provide items to a user; we call those items evidence candidates. Recommendations are then made based on the items selected by the user. Previous recommendation studies have two limitations: (1) the users who consumed a few items have poor recommendations and (2) inadequate evidence candidates are used to identify user preferences. We propose a meta-learning-based recommender system called MeLU to overcome these two limitations. From meta-learning, which can rapidly adopt new task with a few examples, MeLU can estimate new user's preferences with a few consumed items. In addition, we provide an evidence candidate selection strategy that determines distinguishing items for customized preference estimation. We validate MeLU with two benchmark datasets, and the proposed model reduces at least 5.92% mean absolute error than two comparative models on the datasets. We also conduct a user study experiment to verify the evidence selection strategy.

Many current applications use recommendations in order to modify the natural user behavior, such as to increase the number of sales or the time spent on a website. This results in a gap between the final recommendation objective and the classical setup where recommendation candidates are evaluated by their coherence with past user behavior, by predicting either the missing entries in the user-item matrix, or the most likely next event. To bridge this gap, we optimize a recommendation policy for the task of increasing the desired outcome versus the organic user behavior. We show this is equivalent to learning to predict recommendation outcomes under a fully random recommendation policy. To this end, we propose a new domain adaptation algorithm that learns from logged data containing outcomes from a biased recommendation policy and predicts recommendation outcomes according to random exposure. We compare our method against state-of-the-art factorization methods, in addition to new approaches of causal recommendation and show significant improvements.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司