The increasing complexity of data requires methods and models that can effectively handle intricate structures, as simplifying them would result in loss of information. While several analytical tools have been developed to work with complex data objects in their original form, these tools are typically limited to single-type variables. In this work, we propose energy trees as a regression and classification model capable of accommodating structured covariates of various types. Energy trees leverage energy statistics to extend the capabilities of conditional inference trees, from which they inherit sound statistical foundations, interpretability, scale invariance, and freedom from distributional assumptions. We specifically focus on functional and graph-structured covariates, while also highlighting the model's flexibility in integrating other variable types. Extensive simulation studies demonstrate the model's competitive performance in terms of variable selection and robustness to overfitting. Finally, we assess the model's predictive ability through two empirical analyses involving human biological data. Energy trees are implemented in the R package etree.
Multispectral pedestrian detection is an important task for many around-the-clock applications, since the visible and thermal modalities can provide complementary information especially under low light conditions. Most of the available multispectral pedestrian detectors are based on non-end-to-end detectors, while in this paper, we propose MultiSpectral pedestrian DEtection TRansformer (MS-DETR), an end-to-end multispectral pedestrian detector, which extends DETR into the field of multi-modal detection. MS-DETR consists of two modality-specific backbones and Transformer encoders, followed by a multi-modal Transformer decoder, and the visible and thermal features are fused in the multi-modal Transformer decoder. To well resist the misalignment between multi-modal images, we design a loosely coupled fusion strategy by sparsely sampling some keypoints from multi-modal features independently and fusing them with adaptively learned attention weights. Moreover, based on the insight that not only different modalities, but also different pedestrian instances tend to have different confidence scores to final detection, we further propose an instance-aware modality-balanced optimization strategy, which preserves visible and thermal decoder branches and aligns their predicted slots through an instance-wise dynamic loss. Our end-to-end MS-DETR shows superior performance on the challenging KAIST, CVC-14 and LLVIP benchmark datasets. The source code is available at //github.com/YinghuiXing/MS-DETR .
DAVIS camera, streaming two complementary sensing modalities of asynchronous events and frames, has gradually been used to address major object detection challenges (e.g., fast motion blur and low-light). However, how to effectively leverage rich temporal cues and fuse two heterogeneous visual streams remains a challenging endeavor. To address this challenge, we propose a novel streaming object detector with Transformer, namely SODFormer, which first integrates events and frames to continuously detect objects in an asynchronous manner. Technically, we first build a large-scale multimodal neuromorphic object detection dataset (i.e., PKU-DAVIS-SOD) over 1080.1k manual labels. Then, we design a spatiotemporal Transformer architecture to detect objects via an end-to-end sequence prediction problem, where the novel temporal Transformer module leverages rich temporal cues from two visual streams to improve the detection performance. Finally, an asynchronous attention-based fusion module is proposed to integrate two heterogeneous sensing modalities and take complementary advantages from each end, which can be queried at any time to locate objects and break through the limited output frequency from synchronized frame-based fusion strategies. The results show that the proposed SODFormer outperforms four state-of-the-art methods and our eight baselines by a significant margin. We also show that our unifying framework works well even in cases where the conventional frame-based camera fails, e.g., high-speed motion and low-light conditions. Our dataset and code can be available at //github.com/dianzl/SODFormer.
Quantization has become a mainstream compression technique for reducing model size, computational requirements, and energy consumption for modern deep neural networks (DNNs). With the improved numerical support in recent hardware, including multiple variants of integer and floating point, mixed-precision quantization has become necessary to achieve high-quality results with low model cost. Prior mixed-precision quantization methods have performed a post-training quantization search, which compromises on accuracy, or a differentiable quantization search, which leads to high memory usage from branching. Therefore, we propose the first one-shot mixed-precision quantization search that eliminates the need for retraining in both integer and low-precision floating point models. We evaluate our floating-point and integer quantization search (FLIQS) on multiple convolutional networks and vision transformer models to discover Pareto-optimal models. Our approach discovers models that improve upon uniform precision, manual mixed-precision, and recent integer quantization search methods. With the proposed integer quantization search, we increase the accuracy of ResNet-18 on ImageNet by 1.31% points and ResNet-50 by 0.90% points with equivalent model cost over previous methods. Additionally, for the first time, we explore a novel mixed-precision floating-point search and improve MobileNetV2 by up to 0.98% points compared to prior state-of-the-art FP8 models. Finally, we extend FLIQS to simultaneously search a joint quantization and neural architecture space and improve the ImageNet accuracy by 2.69% points with similar model cost on a MobileNetV2 search space.
Conventional detectors suffer from performance degradation when dealing with long-tailed data due to a classification bias towards the majority head categories. In this paper, we contend that the learning bias originates from two factors: 1) the unequal competition arising from the imbalanced distribution of foreground categories, and 2) the lack of sample diversity in tail categories. To tackle these issues, we introduce a unified framework called BAlanced CLassification (BACL), which enables adaptive rectification of inequalities caused by disparities in category distribution and dynamic intensification of sample diversities in a synchronized manner. Specifically, a novel foreground classification balance loss (FCBL) is developed to ameliorate the domination of head categories and shift attention to difficult-to-differentiate categories by introducing pairwise class-aware margins and auto-adjusted weight terms, respectively. This loss prevents the over-suppression of tail categories in the context of unequal competition. Moreover, we propose a dynamic feature hallucination module (FHM), which enhances the representation of tail categories in the feature space by synthesizing hallucinated samples to introduce additional data variances. In this divide-and-conquer approach, BACL sets a new state-of-the-art on the challenging LVIS benchmark with a decoupled training pipeline, surpassing vanilla Faster R-CNN with ResNet-50-FPN by 5.8% AP and 16.1% AP for overall and tail categories. Extensive experiments demonstrate that BACL consistently achieves performance improvements across various datasets with different backbones and architectures. Code and models are available at //github.com/Tianhao-Qi/BACL.
We present a critical analysis of the simulation framework RICE-N, an integrated assessment model (IAM) for evaluating the impacts of climate change on the economy. We identify key issues with RICE-N, including action masking and irrelevant actions, and suggest improvements such as utilizing tariff revenue and penalizing overproduction. We also critically engage with features of IAMs in general, namely overly optimistic damage functions and unrealistic abatement cost functions. Our findings contribute to the ongoing efforts to further develop the RICE-N framework in an effort to improve the simulation, making it more useful as an inspiration for policymakers.
Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.
Hierarchical structures are popular in recent vision transformers, however, they require sophisticated designs and massive datasets to work well. In this paper, we explore the idea of nesting basic local transformers on non-overlapping image blocks and aggregating them in a hierarchical way. We find that the block aggregation function plays a critical role in enabling cross-block non-local information communication. This observation leads us to design a simplified architecture that requires minor code changes upon the original vision transformer. The benefits of the proposed judiciously-selected design are threefold: (1) NesT converges faster and requires much less training data to achieve good generalization on both ImageNet and small datasets like CIFAR; (2) when extending our key ideas to image generation, NesT leads to a strong decoder that is 8$\times$ faster than previous transformer-based generators; and (3) we show that decoupling the feature learning and abstraction processes via this nested hierarchy in our design enables constructing a novel method (named GradCAT) for visually interpreting the learned model. Source code is available //github.com/google-research/nested-transformer.
Meta-reinforcement learning algorithms can enable robots to acquire new skills much more quickly, by leveraging prior experience to learn how to learn. However, much of the current research on meta-reinforcement learning focuses on task distributions that are very narrow. For example, a commonly used meta-reinforcement learning benchmark uses different running velocities for a simulated robot as different tasks. When policies are meta-trained on such narrow task distributions, they cannot possibly generalize to more quickly acquire entirely new tasks. Therefore, if the aim of these methods is to enable faster acquisition of entirely new behaviors, we must evaluate them on task distributions that are sufficiently broad to enable generalization to new behaviors. In this paper, we propose an open-source simulated benchmark for meta-reinforcement learning and multi-task learning consisting of 50 distinct robotic manipulation tasks. Our aim is to make it possible to develop algorithms that generalize to accelerate the acquisition of entirely new, held-out tasks. We evaluate 6 state-of-the-art meta-reinforcement learning and multi-task learning algorithms on these tasks. Surprisingly, while each task and its variations (e.g., with different object positions) can be learned with reasonable success, these algorithms struggle to learn with multiple tasks at the same time, even with as few as ten distinct training tasks. Our analysis and open-source environments pave the way for future research in multi-task learning and meta-learning that can enable meaningful generalization, thereby unlocking the full potential of these methods.
Explainable recommendation attempts to develop models that generate not only high-quality recommendations but also intuitive explanations. The explanations may either be post-hoc or directly come from an explainable model (also called interpretable or transparent model in some context). Explainable recommendation tries to address the problem of why: by providing explanations to users or system designers, it helps humans to understand why certain items are recommended by the algorithm, where the human can either be users or system designers. Explainable recommendation helps to improve the transparency, persuasiveness, effectiveness, trustworthiness, and satisfaction of recommendation systems. In this survey, we review works on explainable recommendation in or before the year of 2019. We first highlight the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation on three perspectives: 1) We provide a chronological research timeline of explainable recommendation, including user study approaches in the early years and more recent model-based approaches. 2) We provide a two-dimensional taxonomy to classify existing explainable recommendation research: one dimension is the information source (or display style) of the explanations, and the other dimension is the algorithmic mechanism to generate explainable recommendations. 3) We summarize how explainable recommendation applies to different recommendation tasks, such as product recommendation, social recommendation, and POI recommendation. We also devote a section to discuss the explanation perspectives in broader IR and AI/ML research. We end the survey by discussing potential future directions to promote the explainable recommendation research area and beyond.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.