亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deception, which includes leading cyber-attackers astray with false information, has shown to be an effective method of thwarting cyber-attacks. There has been little investigation of the effect of probing action costs on adversarial decision-making, despite earlier studies on deception in cybersecurity focusing primarily on variables like network size and the percentage of honeypots utilized in games. Understanding human decision-making when prompted with choices of various costs is essential in many areas such as in cyber security. In this paper, we will use a deception game (DG) to examine different costs of probing on adversarial decisions. To achieve this we utilized an IBLT model and a delayed feedback mechanism to mimic knowledge of human actions. Our results were taken from an even split of deception and no deception to compare each influence. It was concluded that probing was slightly taken less as the cost of probing increased. The proportion of attacks stayed relatively the same as the cost of probing increased. Although a constant cost led to a slight decrease in attacks. Overall, our results concluded that the different probing costs do not have an impact on the proportion of attacks whereas it had a slightly noticeable impact on the proportion of probing.

相關內容

When constructing parametric models to predict the cost of future claims, several important details have to be taken into account: (i) models should be designed to accommodate deductibles, policy limits, and coinsurance factors, (ii) parameters should be estimated robustly to control the influence of outliers on model predictions, and (iii) all point predictions should be augmented with estimates of their uncertainty. The methodology proposed in this paper provides a framework for addressing all these aspects simultaneously. Using payment-per-payment and payment-per-loss variables, we construct the adaptive version of method of winsorized moments (MWM) estimators for the parameters of truncated and censored lognormal distribution. Further, the asymptotic distributional properties of this approach are derived and compared with those of the maximum likelihood estimator (MLE) and method of trimmed moments (MTM) estimators. The latter being a primary competitor to MWM. Moreover, the theoretical results are validated with extensive simulation studies and risk measure sensitivity analysis. Finally, practical performance of these methods is illustrated using the well-studied data set of 1500 U.S. indemnity losses. With this real data set, it is also demonstrated that the composite models do not provide much improvement in the quality of predictive models compared to a stand-alone fitted distribution specially for truncated and censored sample data.

This study critically evaluates the efficacy of prompting methods in enhancing the mathematical reasoning capability of large language models (LLMs). The investigation uses three prescriptive prompting methods - simple, persona, and conversational prompting - known for their effectiveness in enhancing the linguistic tasks of LLMs. We conduct this analysis on OpenAI's LLM chatbot, ChatGPT-3.5, on extensive problem sets from the MATH, GSM8K, and MMLU datasets, encompassing a broad spectrum of mathematical challenges. A grading script adapted to each dataset is used to determine the effectiveness of these prompting interventions in enhancing the model's mathematical analysis power. Contrary to expectations, our empirical analysis reveals that none of the investigated methods consistently improves over ChatGPT-3.5's baseline performance, with some causing significant degradation. Our findings suggest that prompting strategies do not necessarily generalize to new domains, in this study failing to enhance mathematical performance.

Arrangements of pseudolines are classic objects in discrete and computational geometry. They have been studied with increasing intensity since their introduction almost 100 years ago. The study of the number $B_n$ of non-isomorphic simple arrangements of $n$ pseudolines goes back to Goodman and Pollack, Knuth, and others. It is known that $B_n$ is in the order of $2^{\Theta(n^2)}$ and finding asymptotic bounds on $b_n = \frac{\log_2(B_n)}{n^2}$ remains a challenging task. In 2011, Felsner and Valtr showed that $0.1887 \leq b_n \le 0.6571$ for sufficiently large $n$. The upper bound remains untouched but in 2020 Dumitrescu and Mandal improved the lower bound constant to $0.2083$. Their approach utilizes the known values of $B_n$ for up to $n=12$. We tackle the lower bound with a dynamic programming scheme. Our new bound is $b_n \geq 0.2526$ for sufficiently large $n$. The result is based on a delicate interplay of theoretical ideas and computer assistance.

Cellular reprogramming can be used for both the prevention and cure of different diseases. However, the efficiency of discovering reprogramming strategies with classical wet-lab experiments is hindered by lengthy time commitments and high costs. In this study, we develop a novel computational framework based on deep reinforcement learning that facilitates the identification of reprogramming strategies. For this aim, we formulate a control problem in the context of cellular reprogramming for the frameworks of BNs and PBNs under the asynchronous update mode. Furthermore, we introduce the notion of a pseudo-attractor and a procedure for identification of pseudo-attractor state during training. Finally, we devise a computational framework for solving the control problem, which we test on a number of different models.

Explainable AI methods facilitate the understanding of model behaviour, yet, small, imperceptible perturbations to inputs can vastly distort explanations. As these explanations are typically evaluated holistically, before model deployment, it is difficult to assess when a particular explanation is trustworthy. Some studies have tried to create confidence estimators for explanations, but none have investigated an existing link between uncertainty and explanation quality. We artificially simulate epistemic uncertainty in text input by introducing noise at inference time. In this large-scale empirical study, we insert different levels of noise perturbations and measure the effect on the output of pre-trained language models and different uncertainty metrics. Realistic perturbations have minimal effect on performance and explanations, yet masking has a drastic effect. We find that high uncertainty doesn't necessarily imply low explanation plausibility; the correlation between the two metrics can be moderately positive when noise is exposed during the training process. This suggests that noise-augmented models may be better at identifying salient tokens when uncertain. Furthermore, when predictive and epistemic uncertainty measures are over-confident, the robustness of a saliency map to perturbation can indicate model stability issues. Integrated Gradients shows the overall greatest robustness to perturbation, while still showing model-specific patterns in performance; however, this phenomenon is limited to smaller Transformer-based language models.

We prove impossibility results for adaptivity in non-smooth stochastic convex optimization. Given a set of problem parameters we wish to adapt to, we define a "price of adaptivity" (PoA) that, roughly speaking, measures the multiplicative increase in suboptimality due to uncertainty in these parameters. When the initial distance to the optimum is unknown but a gradient norm bound is known, we show that the PoA is at least logarithmic for expected suboptimality, and double-logarithmic for median suboptimality. When there is uncertainty in both distance and gradient norm, we show that the PoA must be polynomial in the level of uncertainty. Our lower bounds nearly match existing upper bounds, and establish that there is no parameter-free lunch.

The convergence rate of a Markov chain to its stationary distribution is typically assessed using the concept of total variation mixing time. However, this worst-case measure often yields pessimistic estimates and is challenging to infer from observations. In this paper, we advocate for the use of the average-mixing time as a more optimistic and demonstrably easier-to-estimate alternative. We further illustrate its applicability across a range of settings, from two-point to countable spaces, and discuss some practical implications.

This study explores the impact of peer acknowledgement on learner engagement and implicit psychological attributes in written annotations on an online social reading platform. Participants included 91 undergraduates from a large North American University. Using log file data, we analyzed the relationship between learners' received peer acknowledgement and their subsequent annotation behaviours using cross-lag regression. Higher peer acknowledgements correlate with increased initiation of annotations and responses to peer annotations. By applying text mining techniques and calculating Shapley values to analyze 1,969 social annotation entries, we identified prominent psychological themes within three dimensions (i.e., affect, cognition, and motivation) that foster peer acknowledgment in digital social annotation. These themes include positive affect, openness to learning and discussion, and expression of motivation. The findings assist educators in improving online learning communities and provide guidance to technology developers in designing effective prompts, drawing from both implicit psychological cues and explicit learning behaviours.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司