亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider linear codes over a finite field of odd characteristic, derived from determinantal varieties, obtained from symmetric matrices of bounded ranks. A formula for the weight of a code word is derived. Using this formula, we have computed the minimum distance for the codes corresponding to matrices upper-bounded by any fixed, even rank. A conjecture is proposed for the cases where the upper bound is odd. At the end of the article, tables for the weights of these codes, for spaces of symmetric matrices up to order $5$, are given. We also correct typographical errors in Proposition 1.1/3.1 of [3], and in the last table, and we have rewritten Corollary 4.9 of that paper, and the usage of that Corollary in the proof of Proposition 4.10.

相關內容

The interpolative decomposition (ID) aims to construct a low-rank approximation formed by a basis consisting of row/column skeletons in the original matrix and a corresponding interpolation matrix. This work explores fast and accurate ID algorithms from five essential perspectives for empirical performance: (a) skeleton complexity that measures the minimum possible ID rank for a given low-rank approximation error, (b) asymptotic complexity in FLOPs, (c) parallelizability of the computational bottleneck as matrix-matrix multiplications, (d) error-revealing property that enables automatic rank detection for given error tolerances without prior knowledge of target ranks, (e) ID-revealing property that ensures efficient construction of the optimal interpolation matrix after selecting the skeletons. While a broad spectrum of algorithms have been developed to optimize parts of the aforementioned perspectives, practical ID algorithms proficient in all perspectives remain absent. To fill in the gap, we introduce robust blockwise random pivoting (RBRP) that is parallelizable, error-revealing, and exact-ID-revealing, with comparable skeleton and asymptotic complexities to the best existing ID algorithms in practice. Through extensive numerical experiments on various synthetic and natural datasets, we empirically demonstrate the appealing performance of RBRP from the five perspectives above, as well as the robustness of RBRP to adversarial inputs.

The assessment of binary classifier performance traditionally centers on discriminative ability using metrics, such as accuracy. However, these metrics often disregard the model's inherent uncertainty, especially when dealing with sensitive decision-making domains, such as finance or healthcare. Given that model-predicted scores are commonly seen as event probabilities, calibration is crucial for accurate interpretation. In our study, we analyze the sensitivity of various calibration measures to score distortions and introduce a refined metric, the Local Calibration Score. Comparing recalibration methods, we advocate for local regressions, emphasizing their dual role as effective recalibration tools and facilitators of smoother visualizations. We apply these findings in a real-world scenario using Random Forest classifier and regressor to predict credit default while simultaneously measuring calibration during performance optimization.

Class distribution shifts are particularly challenging for zero-shot classifiers, which rely on representations learned from training classes but are deployed on new, unseen ones. Common causes for such shifts are changes in attributes associated with classes, such as race or gender in person identification. In this work, we propose and analyze a model that adopts this setting, assuming that the attribute responsible for the shift is unknown during training. To address the challenge of learning data representations robust to such shifts, we introduce a framework based on hierarchical sampling to construct synthetic data environments. Despite key differences between the settings, this framework allows us to formulate class distribution shifts in zero-shot learning as out-of-distribution problems. Consequently, we present an algorithm for learning robust representations, and show that our approach significantly improves generalization to diverse class distributions in both simulations and real-world datasets.

We characterize the learning dynamics of stochastic gradient descent (SGD) when continuous symmetry exists in the loss function, where the divergence between SGD and gradient descent is dramatic. We show that depending on how the symmetry affects the learning dynamics, we can divide a family of symmetry into two classes. For one class of symmetry, SGD naturally converges to solutions that have a balanced and aligned gradient noise. For the other class of symmetry, SGD will almost always diverge. Then, we show that our result remains applicable and can help us understand the training dynamics even when the symmetry is not present in the loss function. Our main result is universal in the sense that it only depends on the existence of the symmetry and is independent of the details of the loss function. We demonstrate that the proposed theory offers an explanation of progressive sharpening and flattening and can be applied to common practical problems such as representation normalization, matrix factorization, and the use of warmup.

Recent molecular communication (MC) research has integrated more detailed computational models to capture the dynamics of practical biophysical systems. This research focuses on developing realistic models for MC transceivers inspired by spheroids - three-dimensional cell aggregates commonly used in organ-on-chip experimental systems. Potential applications that can be used or modeled with spheroids include nutrient transport in an organ-on-chip system, the release of biomarkers or reception of drug molecules by a cancerous tumor site, or transceiver nanomachines participating in information exchange. In this paper, a simple diffusive MC system is considered where a spheroidal transmitter and receiver are in an unbounded fluid environment. These spheroidal antennas are modeled as porous media for diffusive signaling molecules, then their boundary conditions and effective diffusion coefficients are characterized. Further, for either a point source or spheroidal transmitter, Green's function for concentration (GFC) outside and inside the receiving spheroid is analytically derived and formulated in terms of an infinite series and confirmed by a particle-based simulator (PBS). The provided GFCs enable computation of the transmitted and received signals in the spheroidal communication system. This study shows that the porous structure of the receiving spheroid amplifies diffusion signals but also disperses them, thus there is a trade-off between porosity and information transmission rate. Also, the results reveal that the porous arrangement of the transmitting spheroid not only disperses the received signal but also attenuates it. System performance is also evaluated in terms of bit error rate (BER). Decreasing the porosity of the receiving spheroid is shown to enhance system performance. Conversely, reducing the porosity of the transmitting spheroid can adversely affect system performance.

Gender-neutral translation (GNT) that avoids biased and undue binary assumptions is a pivotal challenge for the creation of more inclusive translation technologies. Advancements for this task in Machine Translation (MT), however, are hindered by the lack of dedicated parallel data, which are necessary to adapt MT systems to satisfy neutral constraints. For such a scenario, large language models offer hitherto unforeseen possibilities, as they come with the distinct advantage of being versatile in various (sub)tasks when provided with explicit instructions. In this paper, we explore this potential to automate GNT by comparing MT with the popular GPT-4 model. Through extensive manual analyses, our study empirically reveals the inherent limitations of current MT systems in generating GNTs and provides valuable insights into the potential and challenges associated with prompting for neutrality.

Within recent times, cybercriminals have curated a variety of organised and resolute cyber attacks within a range of cyber systems, leading to consequential ramifications to private and governmental institutions. Current security-based automation and orchestrations focus on automating fixed purpose and hard-coded solutions, which are easily surpassed by modern-day cyber attacks. Research within Automated Cyber Defence will allow the development and enabling intelligence response by autonomously defending networked systems through sequential decision-making agents. This article comprehensively elaborates the developments within Automated Cyber Defence through a requirement analysis divided into two sub-areas, namely, automated defence and attack agents and Autonomous Cyber Operation (ACO) Gyms. The requirement analysis allows the comparison of automated agents and highlights the importance of ACO Gyms for their continual development. The requirement analysis is also used to critique ACO Gyms with an overall aim to develop them for deploying automated agents within real-world networked systems. Relevant future challenges were addressed from the overall analysis to accelerate development within the area of Automated Cyber Defence.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

Humans can naturally and effectively find salient regions in complex scenes. Motivated by this observation, attention mechanisms were introduced into computer vision with the aim of imitating this aspect of the human visual system. Such an attention mechanism can be regarded as a dynamic weight adjustment process based on features of the input image. Attention mechanisms have achieved great success in many visual tasks, including image classification, object detection, semantic segmentation, video understanding, image generation, 3D vision, multi-modal tasks and self-supervised learning. In this survey, we provide a comprehensive review of various attention mechanisms in computer vision and categorize them according to approach, such as channel attention, spatial attention, temporal attention and branch attention; a related repository //github.com/MenghaoGuo/Awesome-Vision-Attentions is dedicated to collecting related work. We also suggest future directions for attention mechanism research.

北京阿比特科技有限公司