Natural Language Processing models like BERT can provide state-of-the-art word embeddings for downstream NLP tasks. However, these models yet to perform well on Semantic Textual Similarity, and may be too large to be deployed as lightweight edge applications. We seek to apply a suitable contrastive learning method based on the SimCSE paper, to a model architecture adapted from a knowledge distillation based model, DistilBERT, to address these two issues. Our final lightweight model DistilFace achieves an average of 72.1 in Spearman's correlation on STS tasks, a 34.2 percent improvement over BERT base.
Adversarial attacks on Latent Diffusion Model (LDM), the state-of-the-art image generative model, have been adopted as effective protection against malicious finetuning of LDM on unauthorized images. We show that these attacks add an extra error to the score function of adversarial examples predicted by LDM. LDM finetuned on these adversarial examples learns to lower the error by a bias, from which the model is attacked and predicts the score function with biases. Based on the dynamics, we propose to improve the adversarial attack on LDM by Attacking with Consistent score-function Errors (ACE). ACE unifies the pattern of the extra error added to the predicted score function. This induces the finetuned LDM to learn the same pattern as a bias in predicting the score function. We then introduce a well-crafted pattern to improve the attack. Our method outperforms state-of-the-art methods in adversarial attacks on LDM.
Topic modelling was mostly dominated by Bayesian graphical models during the last decade. With the rise of transformers in Natural Language Processing, however, several successful models that rely on straightforward clustering approaches in transformer-based embedding spaces have emerged and consolidated the notion of topics as clusters of embedding vectors. We propose the Transformer-Representation Neural Topic Model (TNTM), which combines the benefits of topic representations in transformer-based embedding spaces and probabilistic modelling. Therefore, this approach unifies the powerful and versatile notion of topics based on transformer embeddings with fully probabilistic modelling, as in models such as Latent Dirichlet Allocation (LDA). We utilize the variational autoencoder (VAE) framework for improved inference speed and modelling flexibility. Experimental results show that our proposed model achieves results on par with various state-of-the-art approaches in terms of embedding coherence while maintaining almost perfect topic diversity. The corresponding source code is available at //github.com/ArikReuter/TNTM.
This study analyzed images generated by three popular generative artificial intelligence (AI) tools - Midjourney, Stable Diffusion, and DALLE 2 - representing various occupations to investigate potential bias in AI generators. Our analysis revealed two overarching areas of concern in these AI generators, including (1) systematic gender and racial biases, and (2) subtle biases in facial expressions and appearances. Firstly, we found that all three AI generators exhibited bias against women and African Americans. Moreover, we found that the evident gender and racial biases uncovered in our analysis were even more pronounced than the status quo when compared to labor force statistics or Google images, intensifying the harmful biases we are actively striving to rectify in our society. Secondly, our study uncovered more nuanced prejudices in the portrayal of emotions and appearances. For example, women were depicted as younger with more smiles and happiness, while men were depicted as older with more neutral expressions and anger, posing a risk that generative AI models may unintentionally depict women as more submissive and less competent than men. Such nuanced biases, by their less overt nature, might be more problematic as they can permeate perceptions unconsciously and may be more difficult to rectify. Although the extent of bias varied depending on the model, the direction of bias remained consistent in both commercial and open-source AI generators. As these tools become commonplace, our study highlights the urgency to identify and mitigate various biases in generative AI, reinforcing the commitment to ensuring that AI technologies benefit all of humanity for a more inclusive future.
Large Language models (LLMs) are achieving state-of-the-art performance in many different downstream tasks. However, the increasing urgency of data privacy requires LLMs to train with Differential Privacy (DP) on private data. Concurrently it is also necessary to compress LLMs for real-life deployments on resource-constrained devices or latency-sensitive applications. Differential privacy and model compression generally must trade off utility loss to achieve their objectives. Moreover, concurrently achieving both can result in even more utility loss. To this end, we propose a novel differentially private knowledge distillation algorithm that exploits synthetic data generated by a differentially private LLM. The knowledge of a teacher model is transferred onto the student in two ways: one way from the synthetic data itself, the hard labels, and the other way by the output distribution of the teacher model evaluated on the synthetic data, the soft labels. Furthermore, if the teacher and student share a similar architectural structure, we can further distill knowledge by exploiting hidden representations. Our results show that our framework substantially improves the utility over existing baselines with strong privacy parameters, {\epsilon} = 2, validating that we can successfully compress autoregressive LLMs while preserving the privacy of training data.
Understanding the inner workings of machine learning models like Transformers is vital for their safe and ethical use. This paper presents an in-depth analysis of a one-layer Transformer model trained for n-digit integer addition. We reveal that the model divides the task into parallel, digit-specific streams and employs distinct algorithms for different digit positions. Our study also finds that the model starts calculations late but executes them rapidly. A rare use case with high loss is identified and explained. Overall, the model's algorithm is explained in detail. These findings are validated through rigorous testing and mathematical modeling, contributing to the broader works in Mechanistic Interpretability, AI safety, and alignment. Our approach opens the door for analyzing more complex tasks and multi-layer Transformer models.
While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.
Contextual embeddings, such as ELMo and BERT, move beyond global word representations like Word2Vec and achieve ground-breaking performance on a wide range of natural language processing tasks. Contextual embeddings assign each word a representation based on its context, thereby capturing uses of words across varied contexts and encoding knowledge that transfers across languages. In this survey, we review existing contextual embedding models, cross-lingual polyglot pre-training, the application of contextual embeddings in downstream tasks, model compression, and model analyses.