亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The goal of Online Domain Adaptation for semantic segmentation is to handle unforeseeable domain changes that occur during deployment, like sudden weather events. However, the high computational costs associated with brute-force adaptation make this paradigm unfeasible for real-world applications. In this paper we propose HAMLET, a Hardware-Aware Modular Least Expensive Training framework for real-time domain adaptation. Our approach includes a hardware-aware back-propagation orchestration agent (HAMT) and a dedicated domain-shift detector that enables active control over when and how the model is adapted (LT). Thanks to these advancements, our approach is capable of performing semantic segmentation while simultaneously adapting at more than 29FPS on a single consumer-grade GPU. Our framework's encouraging accuracy and speed trade-off is demonstrated on OnDA and SHIFT benchmarks through experimental results.

相關內容

NSFW (Not Safe for Work) content, in the context of a dialogue, can have severe side effects on users in open-domain dialogue systems. However, research on detecting NSFW language, especially sexually explicit content, within a dialogue context has significantly lagged behind. To address this issue, we introduce CensorChat, a dialogue monitoring dataset aimed at NSFW dialogue detection. Leveraging knowledge distillation techniques involving GPT-4 and ChatGPT, this dataset offers a cost-effective means of constructing NSFW content detectors. The process entails collecting real-life human-machine interaction data and breaking it down into single utterances and single-turn dialogues, with the chatbot delivering the final utterance. ChatGPT is employed to annotate unlabeled data, serving as a training set. Rationale validation and test sets are constructed using ChatGPT and GPT-4 as annotators, with a self-criticism strategy for resolving discrepancies in labeling. A BERT model is fine-tuned as a text classifier on pseudo-labeled data, and its performance is assessed. The study emphasizes the importance of AI systems prioritizing user safety and well-being in digital conversations while respecting freedom of expression. The proposed approach not only advances NSFW content detection but also aligns with evolving user protection needs in AI-driven dialogues.

The Semantic Web technologies have been used in the Internet of Things (IoT) to facilitate data interoperability and address data heterogeneity issues. The Resource Description Framework (RDF) model is employed in the integration of IoT data, with RDF engines serving as gateways for semantic integration. However, storing and querying RDF data obtained from distributed sources across a dynamic network of edge devices presents a challenging task. The distributed nature of the edge shares similarities with Peer-to-Peer (P2P) systems. These similarities include attributes like node heterogeneity, limited availability, and resources. The nodes primarily undertake tasks related to data storage and processing. Therefore, the P2P models appear to present an attractive approach for constructing distributed RDF stores. Based on P-Grid, a data indexing mechanism for load balancing and range query processing in P2P systems, this paper proposes a design for storing and sharing RDF data on P2P networks of low-cost edge devices. Our design aims to integrate both P-Grid and an edge-based RDF storage solution, RDF4Led for building an P2P RDF engine. This integration can maintain RDF data access and query processing while scaling with increasing data and network size. We demonstrated the scaling behavior of our implementation on a P2P network, involving up to 16 nodes of Raspberry Pi 4 devices.

In modern commercial search engines and recommendation systems, data from multiple domains is available to jointly train the multi-domain model. Traditional methods train multi-domain models in the multi-task setting, with shared parameters to learn the similarity of multiple tasks, and task-specific parameters to learn the divergence of features, labels, and sample distributions of individual tasks. With the development of large language models, LLM can extract global domain-invariant text features that serve both search and recommendation tasks. We propose a novel framework called S\&R Multi-Domain Foundation, which uses LLM to extract domain invariant features, and Aspect Gating Fusion to merge the ID feature, domain invariant text features and task-specific heterogeneous sparse features to obtain the representations of query and item. Additionally, samples from multiple search and recommendation scenarios are trained jointly with Domain Adaptive Multi-Task module to obtain the multi-domain foundation model. We apply the S\&R Multi-Domain foundation model to cold start scenarios in the pretrain-finetune manner, which achieves better performance than other SOTA transfer learning methods. The S\&R Multi-Domain Foundation model has been successfully deployed in Alipay Mobile Application's online services, such as content query recommendation and service card recommendation, etc.

Neural networks do not generalize well to unseen data with domain shifts -- a longstanding problem in machine learning and AI. To overcome the problem, we propose MixStyle, a simple plug-and-play, parameter-free module that can improve domain generalization performance without the need to collect more data or increase model capacity. The design of MixStyle is simple: it mixes the feature statistics of two random instances in a single forward pass during training. The idea is grounded by the finding from recent style transfer research that feature statistics capture image style information, which essentially defines visual domains. Therefore, mixing feature statistics can be seen as an efficient way to synthesize new domains in the feature space, thus achieving data augmentation. MixStyle is easy to implement with a few lines of code, does not require modification to training objectives, and can fit a variety of learning paradigms including supervised domain generalization, semi-supervised domain generalization, and unsupervised domain adaptation. Our experiments show that MixStyle can significantly boost out-of-distribution generalization performance across a wide range of tasks including image recognition, instance retrieval and reinforcement learning.

We propose a new fractional Laplacian for bounded domains, expressed as a conservation law and thus particularly suited to finite-volume schemes. Our approach permits the direct prescription of no-flux boundary conditions. We first show the well-posedness theory for the fractional heat equation. We also develop a numerical scheme, which correctly captures the action of the fractional Laplacian and its anomalous diffusion effect. We benchmark numerical solutions for the L\'evy-Fokker-Planck equation against known analytical solutions. We conclude by numerically exploring properties of these equations with respect to their stationary states and long-time asymptotics.

Loop closing and relocalization are crucial techniques to establish reliable and robust long-term SLAM by addressing pose estimation drift and degeneration. This article begins by formulating loop closing and relocalization within a unified framework. Then, we propose a novel multi-head network LCR-Net to tackle both tasks effectively. It exploits novel feature extraction and pose-aware attention mechanism to precisely estimate similarities and 6-DoF poses between pairs of LiDAR scans. In the end, we integrate our LCR-Net into a SLAM system and achieve robust and accurate online LiDAR SLAM in outdoor driving environments. We thoroughly evaluate our LCR-Net through three setups derived from loop closing and relocalization, including candidate retrieval, closed-loop point cloud registration, and continuous relocalization using multiple datasets. The results demonstrate that LCR-Net excels in all three tasks, surpassing the state-of-the-art methods and exhibiting a remarkable generalization ability. Notably, our LCR-Net outperforms baseline methods without using a time-consuming robust pose estimator, rendering it suitable for online SLAM applications. To our best knowledge, the integration of LCR-Net yields the first LiDAR SLAM with the capability of deep loop closing and relocalization. The implementation of our methods will be made open-source.

Large language models (LLMs) have shown remarkable capabilities in Natural Language Processing (NLP), especially in domains where labeled data is scarce or expensive, such as clinical domain. However, to unlock the clinical knowledge hidden in these LLMs, we need to design effective prompts that can guide them to perform specific clinical NLP tasks without any task-specific training data. This is known as in-context learning, which is an art and science that requires understanding the strengths and weaknesses of different LLMs and prompt engineering approaches. In this paper, we present a comprehensive and systematic experimental study on prompt engineering for five clinical NLP tasks: Clinical Sense Disambiguation, Biomedical Evidence Extraction, Coreference Resolution, Medication Status Extraction, and Medication Attribute Extraction. We assessed the prompts proposed in recent literature, including simple prefix, simple cloze, chain of thought, and anticipatory prompts, and introduced two new types of prompts, namely heuristic prompting and ensemble prompting. We evaluated the performance of these prompts on three state-of-the-art LLMs: GPT-3.5, BARD, and LLAMA2. We also contrasted zero-shot prompting with few-shot prompting, and provide novel insights and guidelines for prompt engineering for LLMs in clinical NLP. To the best of our knowledge, this is one of the first works on the empirical evaluation of different prompt engineering approaches for clinical NLP in this era of generative AI, and we hope that it will inspire and inform future research in this area.

RGB-T saliency detection has emerged as an important computer vision task, identifying conspicuous objects in challenging scenes such as dark environments. However, existing methods neglect the characteristics of cross-modal features and rely solely on network structures to fuse RGB and thermal features. To address this, we first propose a Multi-Modal Hybrid loss (MMHL) that comprises supervised and self-supervised loss functions. The supervised loss component of MMHL distinctly utilizes semantic features from different modalities, while the self-supervised loss component reduces the distance between RGB and thermal features. We further consider both spatial and channel information during feature fusion and propose the Hybrid Fusion Module to effectively fuse RGB and thermal features. Lastly, instead of jointly training the network with cross-modal features, we implement a sequential training strategy which performs training only on RGB images in the first stage and then learns cross-modal features in the second stage. This training strategy improves saliency detection performance without computational overhead. Results from performance evaluation and ablation studies demonstrate the superior performance achieved by the proposed method compared with the existing state-of-the-art methods.

Over the past decade, domain adaptation has become a widely studied branch of transfer learning that aims to improve performance on target domains by leveraging knowledge from the source domain. Conventional domain adaptation methods often assume access to both source and target domain data simultaneously, which may not be feasible in real-world scenarios due to privacy and confidentiality concerns. As a result, the research of Source-Free Domain Adaptation (SFDA) has drawn growing attention in recent years, which only utilizes the source-trained model and unlabeled target data to adapt to the target domain. Despite the rapid explosion of SFDA work, yet there has no timely and comprehensive survey in the field. To fill this gap, we provide a comprehensive survey of recent advances in SFDA and organize them into a unified categorization scheme based on the framework of transfer learning. Instead of presenting each approach independently, we modularize several components of each method to more clearly illustrate their relationships and mechanics in light of the composite properties of each method. Furthermore, we compare the results of more than 30 representative SFDA methods on three popular classification benchmarks, namely Office-31, Office-home, and VisDA, to explore the effectiveness of various technical routes and the combination effects among them. Additionally, we briefly introduce the applications of SFDA and related fields. Drawing from our analysis of the challenges facing SFDA, we offer some insights into future research directions and potential settings.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司