亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate the computational limits of the memory retrieval dynamics of modern Hopfield models from the fine-grained complexity analysis. Our key contribution is the characterization of a phase transition behavior in the efficiency of all possible modern Hopfield models based on the norm of patterns. Specifically, we establish an upper bound criterion for the norm of input query patterns and memory patterns. Only below this criterion, sub-quadratic (efficient) variants of the modern Hopfield model exist, assuming the Strong Exponential Time Hypothesis (SETH). To showcase our theory, we provide a formal example of efficient constructions of modern Hopfield models using low-rank approximation when the efficient criterion holds. This includes a derivation of a lower bound on the computational time, scaling linearly with $\Max\{$# of stored memory patterns, length of input query sequence$\}$. In addition, we prove its memory retrieval error bound and exponential memory capacity.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Performer · state-of-the-art · 操作 · 講稿 ·
2024 年 3 月 20 日

The sequential semantics of many concurrent data structures, such as stacks and queues, inevitably lead to memory contention in parallel environments, thus limiting scalability. Semantic relaxation has the potential to address this issue, increasing the parallelism at the expense of weakened semantics. Although prior research has shown that improved performance can be attained by relaxing concurrent data structure semantics, there is no one-size-fits-all relaxation that adequately addresses the varying needs of dynamic executions. In this paper, we first introduce the concept of elastic relaxation and consequently present the Lateral structure, which is an algorithmic component capable of supporting the design of elastically relaxed concurrent data structures. Using the Lateral , we design novel elastically relaxed, lock-free queues and stacks capable of reconfiguring relaxation during run time. We establish linearizability and define upper bounds for relaxation errors in our designs. Experimental evaluations show that our elastic designs hold up against state-of-the-art statically relaxed designs, while also swiftly managing trade-offs between relaxation and operational latency. We also outline how to use the Lateral to design elastically relaxed lock-free counters and deques.

This study evaluates the impact of large language models on enhancing machine learning processes for managing traffic incidents. It examines the extent to which features generated by modern language models improve or match the accuracy of predictions when classifying the severity of incidents using accident reports. Multiple comparisons performed between combinations of language models and machine learning algorithms, including Gradient Boosted Decision Trees, Random Forests, and Extreme Gradient Boosting. Our research uses both conventional and language model-derived features from texts and incident reports, and their combinations to perform severity classification. Incorporating features from language models with those directly obtained from incident reports has shown to improve, or at least match, the performance of machine learning techniques in assigning severity levels to incidents, particularly when employing Random Forests and Extreme Gradient Boosting methods. This comparison was quantified using the F1-score over uniformly sampled data sets to obtain balanced severity classes. The primary contribution of this research is in the demonstration of how Large Language Models can be integrated into machine learning workflows for incident management, thereby simplifying feature extraction from unstructured text and enhancing or matching the precision of severity predictions using conventional machine learning pipeline. The engineering application of this research is illustrated through the effective use of these language processing models to refine the modelling process for incident severity classification. This work provides significant insights into the application of language processing capabilities in combination with traditional data for improving machine learning pipelines in the context of classifying incident severity.

Despite the recent increase in research activity, deep-learning models have not yet been widely accepted in several real-world settings, such as medicine. The shortage of high-quality annotated data often hinders the development of robust and generalizable models, which do not suffer from degraded effectiveness when presented with newly-collected, out-of-distribution (OOD) datasets. Contrastive Self-Supervised Learning (SSL) offers a potential solution to labeled data scarcity, as it takes advantage of unlabeled data to increase model effectiveness and robustness. In this research, we propose applying contrastive SSL for detecting abnormalities in 1D phonocardiogram (PCG) samples by learning a generalized representation of the signal. Specifically, we perform an extensive comparative evaluation of a wide range of audio-based augmentations, evaluate trained classifiers on multiple datasets across different downstream tasks, and finally report on the impact of each augmentation in model training. We experimentally demonstrate that, depending on its training distribution, the effectiveness of a fully-supervised model can degrade up to 32% when evaluated on unseen data, while SSL models only lose up to 10% or even improve in some cases. We argue and experimentally demonstrate that, contrastive SSL pretraining can assist in providing robust classifiers which can generalize to unseen, OOD data, without relying on time- and labor-intensive annotation processes by medical experts. Furthermore, the proposed extensive evaluation protocol sheds light on the most promising and appropriate augmentations for robust PCG signal processing, by calculating their effect size on model training. Finally, we provide researchers and practitioners with a roadmap towards producing robust models for PCG classification, in addition to an open-source codebase for developing novel approaches.

The simplex projection expands the capabilities of simplex plots (also known as ternary plots) to achieve a lossless visualization of 4D compositional data on a 2D canvas. Previously, this was only possible for 3D compositional data. We demonstrate how our approach can be applied to individual data points, point clouds, and continuous probability density functions on simplices. While we showcase our visualization technique specifically for 4D compositional data, we offer rigorous proofs that support its extension to compositional data of any (finite) dimensionality.

Despite extensive research on sliding mode control (SMC) design for quadrotors, the existing approaches suffer from certain limitations. Euler angle-based SMC formulations suffer from poor performance in high-pitch or -roll maneuvers. Quaternion-based SMC approaches have unwinding issues and complex architecture. Coordinate-free methods are slow and only almost globally stable. This paper presents a new six degrees of freedom SMC flight controller to address the above limitations. We use a cascaded architecture with a position controller in the outer loop and a quaternion-based attitude controller in the inner loop. The position controller generates the desired trajectory for the attitude controller using a coordinate-free approach. The quaternion-based attitude controller uses the natural characteristics of the quaternion hypersphere, featuring a simple structure while providing global stability and avoiding unwinding issues. We compare our controller with three other common control methods conducting challenging maneuvers like flip-over and high-speed trajectory tracking in the presence of model uncertainties and disturbances. Our controller consistently outperforms the benchmark approaches with less control effort and actuator saturation, offering highly effective and efficient flight control.

Surface parameterization is a fundamental geometry processing problem with rich downstream applications. Traditional approaches are designed to operate on well-behaved mesh models with high-quality triangulations that are laboriously produced by specialized 3D modelers, and thus unable to meet the processing demand for the current explosion of ordinary 3D data. In this paper, we seek to perform UV unwrapping on unstructured 3D point clouds. Technically, we propose ParaPoint, an unsupervised neural learning pipeline for achieving global free-boundary surface parameterization by building point-wise mappings between given 3D points and 2D UV coordinates with adaptively deformed boundaries. We ingeniously construct several geometrically meaningful sub-networks with specific functionalities, and assemble them into a bi-directional cycle mapping framework. We also design effective loss functions and auxiliary differential geometric constraints for the optimization of the neural mapping process. To the best of our knowledge, this work makes the first attempt to investigate neural point cloud parameterization that pursues both global mappings and free boundaries. Experiments demonstrate the effectiveness and inspiring potential of our proposed learning paradigm. The code will be publicly available.

A promising approach for improving the performance of vision-language models like CLIP for image classification is to extend the class descriptions (i.e., prompts) with related attributes, e.g., using brown sparrow instead of sparrow. However, current zero-shot methods select a subset of attributes regardless of commonalities between the target classes, potentially providing no useful information that would have helped to distinguish between them. For instance, they may use color instead of bill shape to distinguish between sparrows and wrens, which are both brown. We propose Follow-up Differential Descriptions (FuDD), a zero-shot approach that tailors the class descriptions to each dataset and leads to additional attributes that better differentiate the target classes. FuDD first identifies the ambiguous classes for each image, and then uses a Large Language Model (LLM) to generate new class descriptions that differentiate between them. The new class descriptions resolve the initial ambiguity and help predict the correct label. In our experiments, FuDD consistently outperforms generic description ensembles and naive LLM-generated descriptions on 12 datasets. We show that differential descriptions are an effective tool to resolve class ambiguities, which otherwise significantly degrade the performance. We also show that high quality natural language class descriptions produced by FuDD result in comparable performance to few-shot adaptation methods.

Recent advances in the theory of Neural Operators (NOs) have enabled fast and accurate computation of the solutions to complex systems described by partial differential equations (PDEs). Despite their great success, current NO-based solutions face important challenges when dealing with spatio-temporal PDEs over long time scales. Specifically, the current theory of NOs does not present a systematic framework to perform data assimilation and efficiently correct the evolution of PDE solutions over time based on sparsely sampled noisy measurements. In this paper, we propose a learning-based state-space approach to compute the solution operators to infinite-dimensional semilinear PDEs. Exploiting the structure of semilinear PDEs and the theory of nonlinear observers in function spaces, we develop a flexible recursive method that allows for both prediction and data assimilation by combining prediction and correction operations. The proposed framework is capable of producing fast and accurate predictions over long time horizons, dealing with irregularly sampled noisy measurements to correct the solution, and benefits from the decoupling between the spatial and temporal dynamics of this class of PDEs. We show through experiments on the Kuramoto-Sivashinsky, Navier-Stokes and Korteweg-de Vries equations that the proposed model is robust to noise and can leverage arbitrary amounts of measurements to correct its prediction over a long time horizon with little computational overhead.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200X faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.

北京阿比特科技有限公司