亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Integrating terrestrial and non-terrestrial networks has the potential of connecting the unconnected and enhancing the user experience for the already-connected, with technological and societal implications of the greatest long-term significance. A convergence of ground, air, and space wireless communications also represents a formidable endeavor for the mobile and satellite communications industries alike, as it entails defining and intelligently orchestrating a new 3D wireless network architecture. In this article, we present the key opportunities and challenges arising from this (r)evolution by presenting some of its disruptive use-cases and key building blocks, reviewing the relevant standardization activities, and pointing to open research problems. By considering two multi-operator paradigms, we also showcase how terrestrial networks could be efficiently re-engineered to cater for aerial services, or opportunistically complemented by non-terrestrial infrastructure to augment their current capabilities.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

Participatory approaches to artificial intelligence (AI) and machine learning (ML) are gaining momentum: the increased attention comes partly with the view that participation opens the gateway to an inclusive, equitable, robust, responsible and trustworthy AI.Among other benefits, participatory approaches are essential to understanding and adequately representing the needs, desires and perspectives of historically marginalized communities. However, there currently exists lack of clarity on what meaningful participation entails and what it is expected to do. In this paper we first review participatory approaches as situated in historical contexts as well as participatory methods and practices within the AI and ML pipeline. We then introduce three case studies in participatory AI.Participation holds the potential for beneficial, emancipatory and empowering technology design, development and deployment while also being at risk for concerns such as cooptation and conflation with other activities. We lay out these limitations and concerns and argue that as participatory AI/ML becomes in vogue, a contextual and nuanced understanding of the term as well as consideration of who the primary beneficiaries of participatory activities ought to be constitute crucial factors to realizing the benefits and opportunities that participation brings.

In recent years, there has been a surge in the adoption of serverless computing due to the ease of deployment, attractive pay-per-use pricing, and transparent horizontal auto-scaling. At the same time, infrastructure advancements such as the emergence of 5G networks and the explosion of devices connected to Internet known as Internet of Things (IoT), as well as new application requirements that constrain where computation and data can happen, will expand the reach of Cloud computing beyond traditional data centers into Hybrid Cloud. Digital transformation due to the pandemic, which accelerated changes to the workforce and spurred further adoption of AI, is expected to accelerate and the emergent Hybrid Cloud market could potentially expand to over trillion dollars. In the Hybrid Cloud environment, driven by the serverless tenants there will be an increased need to focus on enabling productive work for application builders that are using a distributed platform including public clouds, private clouds, and edge systems. In this chapter we investigate how far serverless computing can be extended to become Hybrid Serverless Computing.

Although AI-based systems are increasingly being leveraged to provide value to organizations, individuals, and society, significant attendant risks have been identified. These risks have led to proposed regulations, litigation, and general societal concerns. As with any promising technology, organizations want to benefit from the positive capabilities of AI technology while reducing the risks. The best way to reduce risks is to implement comprehensive AI lifecycle governance where policies and procedures are described and enforced during the design, development, deployment, and monitoring of an AI system. While support for comprehensive governance is beginning to emerge, organizations often need to identify the risks of deploying an already-built model without knowledge of how it was constructed or access to its original developers. Such an assessment will quantitatively assess the risks of an existing model in a manner analogous to how a home inspector might assess the energy efficiency of an already-built home or a physician might assess overall patient health based on a battery of tests. This paper explores the concept of a quantitative AI Risk Assessment, exploring the opportunities, challenges, and potential impacts of such an approach, and discussing how it might improve AI regulations.

With its powerful capability to deal with graph data widely found in practical applications, graph neural networks (GNNs) have received significant research attention. However, as societies become increasingly concerned with data privacy, GNNs face the need to adapt to this new normal. This has led to the rapid development of federated graph neural networks (FedGNNs) research in recent years. Although promising, this interdisciplinary field is highly challenging for interested researchers to enter into. The lack of an insightful survey on this topic only exacerbates this problem. In this paper, we bridge this gap by offering a comprehensive survey of this emerging field. We propose a unique 3-tiered taxonomy of the FedGNNs literature to provide a clear view into how GNNs work in the context of Federated Learning (FL). It puts existing works into perspective by analyzing how graph data manifest themselves in FL settings, how GNN training is performed under different FL system architectures and degrees of graph data overlap across data silo, and how GNN aggregation is performed under various FL settings. Through discussions of the advantages and limitations of existing works, we envision future research directions that can help build more robust, dynamic, efficient, and interpretable FedGNNs.

Federated learning (FL) has been developed as a promising framework to leverage the resources of edge devices, enhance customers' privacy, comply with regulations, and reduce development costs. Although many methods and applications have been developed for FL, several critical challenges for practical FL systems remain unaddressed. This paper provides an outlook on FL development, categorized into five emerging directions of FL, namely algorithm foundation, personalization, hardware and security constraints, lifelong learning, and nonstandard data. Our unique perspectives are backed by practical observations from large-scale federated systems for edge devices.

In the last decade or so, we have witnessed deep learning reinvigorating the machine learning field. It has solved many problems in the domains of computer vision, speech recognition, natural language processing, and various other tasks with state-of-the-art performance. The data is generally represented in the Euclidean space in these domains. Various other domains conform to non-Euclidean space, for which graph is an ideal representation. Graphs are suitable for representing the dependencies and interrelationships between various entities. Traditionally, handcrafted features for graphs are incapable of providing the necessary inference for various tasks from this complex data representation. Recently, there is an emergence of employing various advances in deep learning to graph data-based tasks. This article provides a comprehensive survey of graph neural networks (GNNs) in each learning setting: supervised, unsupervised, semi-supervised, and self-supervised learning. Taxonomy of each graph based learning setting is provided with logical divisions of methods falling in the given learning setting. The approaches for each learning task are analyzed from both theoretical as well as empirical standpoints. Further, we provide general architecture guidelines for building GNNs. Various applications and benchmark datasets are also provided, along with open challenges still plaguing the general applicability of GNNs.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.

Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably their most significant impact has been in the area of computer vision where great advances have been made in challenges such as plausible image generation, image-to-image translation, facial attribute manipulation and similar domains. Despite the significant successes achieved to date, applying GANs to real-world problems still poses significant challenges, three of which we focus on here. These are: (1) the generation of high quality images, (2) diversity of image generation, and (3) stable training. Focusing on the degree to which popular GAN technologies have made progress against these challenges, we provide a detailed review of the state of the art in GAN-related research in the published scientific literature. We further structure this review through a convenient taxonomy we have adopted based on variations in GAN architectures and loss functions. While several reviews for GANs have been presented to date, none have considered the status of this field based on their progress towards addressing practical challenges relevant to computer vision. Accordingly, we review and critically discuss the most popular architecture-variant, and loss-variant GANs, for tackling these challenges. Our objective is to provide an overview as well as a critical analysis of the status of GAN research in terms of relevant progress towards important computer vision application requirements. As we do this we also discuss the most compelling applications in computer vision in which GANs have demonstrated considerable success along with some suggestions for future research directions. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.

Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.

北京阿比特科技有限公司