This is an expository note explaining how the geometric notions of local connectedness and properness are related to the $\Sigma$-type and $\Pi$-type constructors of dependent type theory.
We consider the quasi-likelihood analysis for a linear regression model driven by a Student-t L\'{e}vy process with constant scale and arbitrary degrees of freedom. The model is observed at high frequency over an extending period, under which we can quantify how the sampling frequency affects estimation accuracy. In that setting, joint estimation of trend, scale, and degrees of freedom is a non-trivial problem. The bottleneck is that the Student-t distribution is not closed under convolution, making it difficult to estimate all the parameters fully based on the high-frequency time scale. To efficiently deal with the intricate nature from both theoretical and computational points of view, we propose a two-step quasi-likelihood analysis: first, we make use of the Cauchy quasi-likelihood for estimating the regression-coefficient vector and the scale parameter; then, we construct the sequence of the unit-period cumulative residuals to estimate the remaining degrees of freedom. In particular, using full data in the first step causes a problem stemming from the small-time Cauchy approximation, showing the need for data thinning.
Deepfake detection automatically recognizes the manipulated medias through the analysis of the difference between manipulated and non-altered videos. It is natural to ask which are the top performers among the existing deepfake detection approaches to identify promising research directions and provide practical guidance. Unfortunately, it's difficult to conduct a sound benchmarking comparison of existing detection approaches using the results in the literature because evaluation conditions are inconsistent across studies. Our objective is to establish a comprehensive and consistent benchmark, to develop a repeatable evaluation procedure, and to measure the performance of a range of detection approaches so that the results can be compared soundly. A challenging dataset consisting of the manipulated samples generated by more than 13 different methods has been collected, and 11 popular detection approaches (9 algorithms) from the existing literature have been implemented and evaluated with 6 fair-minded and practical evaluation metrics. Finally, 92 models have been trained and 644 experiments have been performed for the evaluation. The results along with the shared data and evaluation methodology constitute a benchmark for comparing deepfake detection approaches and measuring progress.
Recently (Elkin, Filtser, Neiman 2017) introduced the concept of a {\it terminal embedding} from one metric space $(X,d_X)$ to another $(Y,d_Y)$ with a set of designated terminals $T\subset X$. Such an embedding $f$ is said to have distortion $\rho\ge 1$ if $\rho$ is the smallest value such that there exists a constant $C>0$ satisfying \begin{equation*} \forall x\in T\ \forall q\in X,\ C d_X(x, q) \le d_Y(f(x), f(q)) \le C \rho d_X(x, q) . \end{equation*} When $X,Y$ are both Euclidean metrics with $Y$ being $m$-dimensional, recently (Narayanan, Nelson 2019), following work of (Mahabadi, Makarychev, Makarychev, Razenshteyn 2018), showed that distortion $1+\epsilon$ is achievable via such a terminal embedding with $m = O(\epsilon^{-2}\log n)$ for $n := |T|$. This generalizes the Johnson-Lindenstrauss lemma, which only preserves distances within $T$ and not to $T$ from the rest of space. The downside of prior work is that evaluating their embedding on some $q\in \mathbb{R}^d$ required solving a semidefinite program with $\Theta(n)$ constraints in~$m$ variables and thus required some superlinear $\mathrm{poly}(n)$ runtime. Our main contribution in this work is to give a new data structure for computing terminal embeddings. We show how to pre-process $T$ to obtain an almost linear-space data structure that supports computing the terminal embedding image of any $q\in\mathbb{R}^d$ in sublinear time $O^* (n^{1-\Theta(\epsilon^2)} + d)$. To accomplish this, we leverage tools developed in the context of approximate nearest neighbor search.
Local search is a powerful heuristic in optimization and computer science, the complexity of which has been studied in the white box and black box models. In the black box model, we are given a graph $G = (V,E)$ and oracle access to a function $f : V \to \mathbb{R}$. The local search problem is to find a vertex $v$ that is a local minimum, i.e. with $f(v) \leq f(u)$ for all $(u,v) \in E$, using as few queries to the oracle as possible. We show that if a graph $G$ admits a lazy, irreducible, and reversible Markov chain with stationary distribution $\pi$, then the randomized query complexity of local search on $G$ is $\Omega\left( \frac{\sqrt{n}}{t_{mix} \cdot \exp(3\sigma)}\right)$, where $t_{mix}$ is the mixing time of the chain and $\sigma = \max_{u,v \in V(G)} \frac{\pi(v)}{\pi(u)}.$ This theorem formally establishes a connection between the query complexity of local search and the mixing time of the fastest mixing Markov chain for the given graph. We also get several corollaries that lower bound the complexity as a function of the spectral gap, one of which slightly improves a result from prior work.
Geometric quantum mechanics, through its differential-geometric underpinning, provides additional tools of analysis and interpretation that bring quantum mechanics closer to classical mechanics: state spaces in both are equipped with symplectic geometry. This opens the door to revisiting foundational questions and issues, such as the nature of quantum entropy, from a geometric perspective. Central to this is the concept of geometric quantum state -- the probability measure on a system's space of pure states. This space's continuity leads us to introduce two analysis tools, inspired by Renyi's information theory, to characterize and quantify fundamental properties of geometric quantum states: the quantum information dimension that is the rate of geometric quantum state compression and the dimensional geometric entropy that monitors information stored in quantum states. We recount their classical definitions, information-theoretic meanings, and physical interpretations, and adapt them to quantum systems via the geometric approach. We then explicitly compute them in various examples and classes of quantum system. We conclude commenting on future directions for information in geometric quantum mechanics.
Graph grammars form an interesting area of research because of their versatility in modelling diverse situations with graphs as the structures which are to be manipulated. A new class of graph grammars, nc-eNCE Graph Grammars has been introduced recently with an aim of restricting the order of application of graph production rules, thereby generating different graph classes using the same set of rules. On the other hand 2D game design using an algorithmic approach known as procedural content generation has been of interest recently. In this paper we modify the structure of nc-eNCE graph grammars with the aim of generating directed graphs. We show that employing these graph grammars simplifies the design of 2D games. We have also developed an algorithm which makes use of these graph grammars for generating random game level layouts ensuring that the players will get a different gaming experience each time they play.
We study the problem of domain adaptation under distribution shift, where the shift is due to a change in the distribution of an unobserved, latent variable that confounds both the covariates and the labels. In this setting, neither the covariate shift nor the label shift assumptions apply. Our approach to adaptation employs proximal causal learning, a technique for estimating causal effects in settings where proxies of unobserved confounders are available. We demonstrate that proxy variables allow for adaptation to distribution shift without explicitly recovering or modeling latent variables. We consider two settings, (i) Concept Bottleneck: an additional ''concept'' variable is observed that mediates the relationship between the covariates and labels; (ii) Multi-domain: training data from multiple source domains is available, where each source domain exhibits a different distribution over the latent confounder. We develop a two-stage kernel estimation approach to adapt to complex distribution shifts in both settings. In our experiments, we show that our approach outperforms other methods, notably those which explicitly recover the latent confounder.
The extended persistence diagram is an invariant of piecewise linear functions, which is known to be stable under perturbations of functions with respect to the bottleneck distance as introduced by Cohen-Steiner, Edelsbrunner, and Harer. We address the question of universality, which asks for the largest possible stable distance on extended persistence diagrams, showing that a more discriminative variant of the bottleneck distance is universal. Our result applies more generally to settings where persistence diagrams are considered only up to a certain degree. We achieve our results by establishing a functorial construction and several characteristic properties of relative interlevel set homology, which mirror the classical Eilenberg--Steenrod axioms. Finally, we contrast the bottleneck distance with the interleaving distance of sheaves on the real line by showing that the latter is not intrinsic, let alone universal. This particular result has the further implication that the interleaving distance of Reeb graphs is not intrinsic either.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.