亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

ChatGPT explores a strategic blueprint of question answering (QA) in delivering medical diagnosis, treatment recommendations, and other healthcare support. This is achieved through the increasing incorporation of medical domain data via natural language processing (NLP) and multimodal paradigms. By transitioning the distribution of text, images, videos, and other modalities from the general domain to the medical domain, these techniques have expedited the progress of medical domain question answering (MDQA). They bridge the gap between human natural language and sophisticated medical domain knowledge or expert manual annotations, handling large-scale, diverse, unbalanced, or even unlabeled data analysis scenarios in medical contexts. Central to our focus is the utilizing of language models and multimodal paradigms for medical question answering, aiming to guide the research community in selecting appropriate mechanisms for their specific medical research requirements. Specialized tasks such as unimodal-related question answering, reading comprehension, reasoning, diagnosis, relation extraction, probability modeling, and others, as well as multimodal-related tasks like vision question answering, image caption, cross-modal retrieval, report summarization, and generation, are discussed in detail. Each section delves into the intricate specifics of the respective method under consideration. This paper highlights the structures and advancements of medical domain explorations against general domain methods, emphasizing their applications across different tasks and datasets. It also outlines current challenges and opportunities for future medical domain research, paving the way for continued innovation and application in this rapidly evolving field.

相關內容

自動問答(Question Answering, QA)是指利用計算機自動回答用戶所提出的問題以滿足用戶知識需求的任務。不同于現有搜索引擎,問答系統是信息服務的一種高級形式,系統返回用戶的不再是基于關鍵詞匹配排序的文檔列表,而是精準的自然語言答案。近年來,隨著人工智能的飛速發展,自動問答已經成為倍受關注且發展前景廣泛的研究方向。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

With the explosive growth of medical data and the rapid development of artificial intelligence technology, precision medicine has emerged as a key to enhancing the quality and efficiency of healthcare services. In this context, Large Language Models (LLMs) play an increasingly vital role in medical knowledge acquisition and question-answering systems. To further improve the performance of these systems in the medical domain, we introduce an innovative method that jointly trains an Information Retrieval (IR) system and an LLM during the fine-tuning phase. This approach, which we call Joint Medical LLM and Retrieval Training (JMLR), is designed to overcome the challenges faced by traditional models in handling medical question-answering tasks. By employing a synchronized training mechanism, JMLR reduces the demand for computational resources and enhances the model's ability to leverage medical knowledge for reasoning and answering questions. Our experimental results demonstrate that JMLR-13B (81.2% on Amboos, 61.3% on MedQA) outperforms models using conventional pre-training and fine-tuning Meditron-70B (76.4% on AMBOSS, 60.3% on MedQA). For models of the same 7B scale, JMLR-7B(68.7% on Amboos, 51.7% on MedQA) significantly outperforms other public models (Meditron-7B: 50.1%, 47.9%), proving its superiority in terms of cost (our training time: 37 hours, traditional method: 144 hours), efficiency, and effectiveness in medical question-answering tasks. Through this work, we provide a new and efficient knowledge enhancement tool for healthcare, demonstrating the great potential of integrating IR and LLM training in precision medical information retrieval and question-answering systems.

The growing integration of large language models (LLMs) into social operations amplifies their impact on decisions in crucial areas such as economics, law, education, and healthcare, raising public concerns about these models' discrimination-related safety and reliability. However, prior discrimination measuring frameworks solely assess the average discriminatory behavior of LLMs, often proving inadequate due to the overlook of an additional discrimination-leading factor, i.e., the LLMs' prediction variation across diverse contexts. In this work, we present the Prejudice-Caprice Framework (PCF) that comprehensively measures discrimination in LLMs by considering both their consistently biased preference and preference variation across diverse contexts. Specifically, we mathematically dissect the aggregated contextualized discrimination risk of LLMs into prejudice risk, originating from LLMs' persistent prejudice, and caprice risk, stemming from their generation inconsistency. In addition, we utilize a data-mining approach to gather preference-detecting probes from sentence skeletons, devoid of attribute indications, to approximate LLMs' applied contexts. While initially intended for assessing discrimination in LLMs, our proposed PCF facilitates the comprehensive and flexible measurement of any inductive biases, including knowledge alongside prejudice, across various modality models. We apply our discrimination-measuring framework to 12 common LLMs, yielding intriguing findings: i) modern LLMs demonstrate significant pro-male stereotypes, ii) LLMs' exhibited discrimination correlates with several social and economic factors, iii) prejudice risk dominates the overall discrimination risk and follows a normal distribution, and iv) caprice risk contributes minimally to the overall risk but follows a fat-tailed distribution, suggesting that it is wild risk requiring enhanced surveillance.

Functional Magnetic Resonance Imaging (fMRI) data is a widely used kind of four-dimensional biomedical data, which requires effective compression. However, fMRI compressing poses unique challenges due to its intricate temporal dynamics, low signal-to-noise ratio, and complicated underlying redundancies. This paper reports a novel compression paradigm specifically tailored for fMRI data based on Implicit Neural Representation (INR). The proposed approach focuses on removing the various redundancies among the time series by employing several methods, including (i) conducting spatial correlation modeling for intra-region dynamics, (ii) decomposing reusable neuronal activation patterns, and (iii) using proper initialization together with nonlinear fusion to describe the inter-region similarity. This scheme appropriately incorporates the unique features of fMRI data, and experimental results on publicly available datasets demonstrate the effectiveness of the proposed method, surpassing state-of-the-art algorithms in both conventional image quality evaluation metrics and fMRI downstream tasks. This work in this paper paves the way for sharing massive fMRI data at low bandwidth and high fidelity.

Transferring features learned from natural to medical images for classification is common. However, challenges arise due to the scarcity of certain medical image types and the feature disparities between natural and medical images. Two-step transfer learning has been recognized as a promising solution for this issue. However, choosing an appropriate intermediate domain would be critical in further improving the classification performance. In this work, we explore the effectiveness of using color fundus photographs of the diabetic retina dataset as an intermediate domain for two-step heterogeneous learning (THTL) to classify laryngeal vascular images with nine deep-learning models. Experiment results confirm that although the images in both the intermediate and target domains share vascularized characteristics, the accuracy is drastically reduced compared to one-step transfer learning, where only the last layer is fine-tuned (e.g., ResNet18 drops 14.7%, ResNet50 drops 14.8%). By analyzing the Layer Class Activation Maps (LayerCAM), we uncover a novel finding that the prevalent radial vascular pattern in the intermediate domain prevents learning the features of twisted and tangled vessels that distinguish the malignant class in the target domain. To address the performance drop, we propose the Step-Wise Fine-Tuning (SWFT) method on ResNet in the second step of THTL, resulting in substantial accuracy improvements. Compared to THTL's second step, where only the last layer is fine-tuned, accuracy increases by 26.1% for ResNet18 and 20.4% for ResNet50. Additionally, compared to training from scratch, using ImageNet as the source domain could slightly improve classification performance for laryngeal vascular, but the differences are insignificant.

Objective: For transradial amputees, robotic prosthetic hands promise to regain the capability to perform daily living activities. Current control methods based on physiological signals such as electromyography (EMG) are prone to yielding poor inference outcomes due to motion artifacts, muscle fatigue, and many more. Vision sensors are a major source of information about the environment state and can play a vital role in inferring feasible and intended gestures. However, visual evidence is also susceptible to its own artifacts, most often due to object occlusion, lighting changes, etc. Multimodal evidence fusion using physiological and vision sensor measurements is a natural approach due to the complementary strengths of these modalities. Methods: In this paper, we present a Bayesian evidence fusion framework for grasp intent inference using eye-view video, eye-gaze, and EMG from the forearm processed by neural network models. We analyze individual and fused performance as a function of time as the hand approaches the object to grasp it. For this purpose, we have also developed novel data processing and augmentation techniques to train neural network components. Results: Our results indicate that, on average, fusion improves the instantaneous upcoming grasp type classification accuracy while in the reaching phase by 13.66% and 14.8%, relative to EMG (81.64% non-fused) and visual evidence (80.5% non-fused) individually, resulting in an overall fusion accuracy of 95.3%. Conclusion: Our experimental data analyses demonstrate that EMG and visual evidence show complementary strengths, and as a consequence, fusion of multimodal evidence can outperform each individual evidence modality at any given time.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural network's prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

北京阿比特科技有限公司