亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

PPE (Personal Protective Equipment) has allowed firefighters to perform their everyday tasks without getting harmed since the mid 1800s. Now, the advancement of technology has given rise to the improvements of PPE. PPE can now include sensors to detect any number of environmental hazards (chemical, biological, temperature etc.). As the GT class of CS3750, we have decided to create a version of an interface design sensor that will help firefighters in two ways: navigation and communication. In order to augment a firefighter display when they are within a building, we chose to augment their SCBA (self-contained breathing apparatus). The gas mask will include a small screen that displays vital information directly towards the firefighter without need of any other support. We used the Google Glass to display vital information directly towards the eye in a minimalistic manner, while also augmenting that by adding LED lights to simulate someone calling their name or other auditory signals.While our prototype focuses on two main components of a firefighters search and rescue in a building, both of them combine to augment a firefighters display when searching throughout a building to help improve accuracy, speed and overall experience.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Integration · 生成方法 · 知識 (knowledge) · 控制器 ·
2023 年 10 月 12 日

Organizations have to plan on migrating to quantum-resilient cryptographic measures, also known as PQC. However, this is a difficult task, and to the best of our knowledge, there is no generalized approach to manage such a complex migration for cryptography used in IT systems that explicitly integrates into organizations' steering mechanisms and control systems. We present PMMP, a risk-based process for managing the migration of organizations from classic cryptography to PQC and establishing crypto-agility. Having completed the initial design phase, as well as a theoretical evaluation, we now intend to promote PMMP. Practitioners are encouraged to join the effort in order to enable a comprehensive practical evaluation and further development.

The unparalleled performance of closed-sourced ChatGPT has sparked efforts towards its democratization, with notable strides made by leveraging real user and ChatGPT conversations, as evidenced by Vicuna. However, due to challenges in gathering conversations involving human participation, current endeavors like Baize and UltraChat aim to automatically generate conversational data. They primarily rely on ChatGPT conducting roleplay to simulate human behaviors based on instructions rather than genuine learning from humans, resulting in limited scope, diminished diversity, and an absence of genuine multi-round conversational dynamics. To address the above issues, we target human questions extracted from genuine human-machine conversations as a learning goal and train a user simulator called `Socratic' to produce a high-quality human-centric synthetic conversation dataset. Subsequently, this dataset was used to train our assistant model, named `PlatoLM'. Experimentally, PlatoLM outpaces baseline models in both Vicuna-Bench and MT-Bench by pairwise comparison when considering equivalent training set sizes, and manual evaluation also shows that our model is highly competitive. Impressively, when fine-tuned with the latest LLaMA 2 model, PlatoLM achieves the SOTA performance among 7B models (including LLaMA-2-7B-chat and Vicuna-7B) in MT-Bench benchmark and in Alpaca-Eval benchmark, it ranks second among 7B models, even beating some larger scale models (including LLaMA-2-13B-chat and GPT-3.5). Further in-depth analysis demonstrates the scalability and transferability of our approach. The code is available at //github.com/FreedomIntelligence/PlatoLM.

Recently, Graph Transformer (GT) models have been widely used in the task of Molecular Property Prediction (MPP) due to their high reliability in characterizing the latent relationship among graph nodes (i.e., the atoms in a molecule). However, most existing GT-based methods usually explore the basic interactions between pairwise atoms, and thus they fail to consider the important interactions among critical motifs (e.g., functional groups consisted of several atoms) of molecules. As motifs in a molecule are significant patterns that are of great importance for determining molecular properties (e.g., toxicity and solubility), overlooking motif interactions inevitably hinders the effectiveness of MPP. To address this issue, we propose a novel Atom-Motif Contrastive Transformer (AMCT), which not only explores the atom-level interactions but also considers the motif-level interactions. Since the representations of atoms and motifs for a given molecule are actually two different views of the same instance, they are naturally aligned to generate the self-supervisory signals for model training. Meanwhile, the same motif can exist in different molecules, and hence we also employ the contrastive loss to maximize the representation agreement of identical motifs across different molecules. Finally, in order to clearly identify the motifs that are critical in deciding the properties of each molecule, we further construct a property-aware attention mechanism into our learning framework. Our proposed AMCT is extensively evaluated on seven popular benchmark datasets, and both quantitative and qualitative results firmly demonstrate its effectiveness when compared with the state-of-the-art methods.

We give a characterization of those sets of graphs that are both definable in Counting Monadic Second Order Logic (CMS) and context-free, i.e., least solutions of Hyperedge-Replacement (HR)-grammars introduced by Courcelle and Engelfriet. We give the following equivalent characterizations: (a) a set of graphs is recognizable (in the algebra that consists of all graphs and HR-operations) and has bounded tree-width; further, we refine this condition and show equivalence with recognizability in a finite-sort subalgebra of the graph algebra; (b) the set is parsable, i.e., there is an MS-definable transduction from graphs to a set of derivation trees labelled by HR-operations, such that the set of graphs is the image of this set of trees under the evaluation of the HR-operations; (c) the set of graphs is the image of unranked recognizable set of trees under an MS-definable transduction whose inverse is also MS-definable. The main goal of this paper is to present the above characterization, of which several directions are already known, in an accessible and unified way. We rely on a novel connection between two seminal results, a logical characterization of context-free graph languages in terms of tree to graph MS-definable transductions, by Courcelle and Engelfriet~, and a proof that an optimal-width tree decomposition of a graph can be built by an MS-definable transduction, by Bojanczyk and Pilipczuk.

Large Language Models (LLMs) have shown remarkable success in various tasks, but concerns about their safety and the potential for generating malicious content have emerged. In this paper, we explore the power of In-Context Learning (ICL) in manipulating the alignment ability of LLMs. We find that by providing just few in-context demonstrations without fine-tuning, LLMs can be manipulated to increase or decrease the probability of jailbreaking, i.e. answering malicious prompts. Based on these observations, we propose In-Context Attack (ICA) and In-Context Defense (ICD) methods for jailbreaking and guarding aligned language model purposes. ICA crafts malicious contexts to guide models in generating harmful outputs, while ICD enhances model robustness by demonstrations of rejecting to answer harmful prompts. Our experiments show the effectiveness of ICA and ICD in increasing or reducing the success rate of adversarial jailbreaking attacks. Overall, we shed light on the potential of ICL to influence LLM behavior and provide a new perspective for enhancing the safety and alignment of LLMs.

Discussion and debate among Large Language Models (LLMs) have gained considerable attention due to their potential to enhance the reasoning ability of LLMs. Although natural language is an obvious choice for communication due to LLM's language understanding capability, the token sampling step needed when generating natural language poses a potential risk of information loss, as it uses only one token to represent the model's belief across the entire vocabulary. In this paper, we introduce a communication regime named CIPHER (Communicative Inter-Model Protocol Through Embedding Representation) to address this issue. Specifically, we remove the token sampling step from LLMs and let them communicate their beliefs across the vocabulary through the expectation of the raw transformer output embeddings. Remarkably, by deviating from natural language, CIPHER offers an advantage of encoding a broader spectrum of information without any modification to the model weights. While the state-of-the-art LLM debate methods using natural language outperforms traditional inference by a margin of 1.5-8%, our experiment results show that CIPHER debate further extends this lead by 1-3.5% across five reasoning tasks and multiple open-source LLMs of varying sizes. This showcases the superiority and robustness of embeddings as an alternative "language" for communication among LLMs.

The development of unmanned aerial vehicles (UAVs) has been gaining momentum in recent years owing to technological advances and a significant reduction in their cost. UAV technology can be used in a wide range of domains, including communication, agriculture, security, and transportation. It may be useful to group the UAVs into clusters/flocks in certain domains, and various challenges associated with UAV usage can be alleviated by clustering. Several computational challenges arise in UAV flock management, which can be solved by using machine learning (ML) methods. In this survey, we describe the basic terms relating to UAVS and modern ML methods, and we provide an overview of related tutorials and surveys. We subsequently consider the different challenges that appear in UAV flocks. For each issue, we survey several machine learning-based methods that have been suggested in the literature to handle the associated challenges. Thereafter, we describe various open issues in which ML can be applied to solve the different challenges of flocks, and we suggest means of using ML methods for this purpose. This comprehensive review may be useful for both researchers and developers in providing a wide view of various aspects of state-of-the-art ML technologies that are applicable to flock management.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

We consider the task of weakly supervised one-shot detection. In this task, we attempt to perform a detection task over a set of unseen classes, when training only using weak binary labels that indicate the existence of a class instance in a given example. The model is conditioned on a single exemplar of an unseen class and a target example that may or may not contain an instance of the same class as the exemplar. A similarity map is computed by using a Siamese neural network to map the exemplar and regions of the target example to a latent representation space and then computing cosine similarity scores between representations. An attention mechanism weights different regions in the target example, and enables learning of the one-shot detection task using the weaker labels alone. The model can be applied to detection tasks from different domains, including computer vision object detection. We evaluate our attention Siamese networks on a one-shot detection task from the audio domain, where it detects audio keywords in spoken utterances. Our model considerably outperforms a baseline approach and yields a 42.6% average precision for detection across 10 unseen classes. Moreover, architectural developments from computer vision object detection models such as a region proposal network can be incorporated into the model architecture, and results show that performance is expected to improve by doing so.

北京阿比特科技有限公司