The rapid design of advanced materials is a topic of great scientific interest. The conventional, ``forward'' paradigm of materials design involves evaluating multiple candidates to determine the best candidate that matches the target properties. However, recent advances in the field of deep learning have given rise to the possibility of an ``inverse'' design paradigm for advanced materials, wherein a model provided with the target properties is able to find the best candidate. Being a relatively new concept, there remains a need to systematically evaluate how these two paradigms perform in practical applications. Therefore, the objective of this study is to directly, quantitatively compare the forward and inverse design modeling paradigms. We do so by considering two case studies of refractory high-entropy alloy design with different objectives and constraints and comparing the inverse design method to other forward schemes like localized forward search, high throughput screening, and multi objective optimization.
The rise in popularity of ChatGPT and GPT-4 has significantly accelerated the development of large models, leading to the creation of numerous impressive large language models(LLMs) and multimodal large language models (MLLMs). These cutting-edge models owe their remarkable performance to high-quality data. However, the details of the training data used in leading paradigms are often kept confidential. This lack of transparency, coupled with the scarcity of open-source data, impedes further developments within the community. As a response, this paper presents "Wan Juan", a large-scale multimodal dataset composed of both Chinese and English data, collected from a wide range of web sources. The dataset incorporates text, image-text, and video modalities, with a total volume exceeding 2TB. It was utilized in the training of InternLM, a model that demonstrated significant advantages in multi-dimensional evaluations when compared to models of a similar scale. All data can be accessed at //opendatalab.org.cn/WanJuan1.0.
Oobleck enables resilient distributed training of large DNN models with guaranteed fault tolerance. It takes a planning-execution co-design approach, where it first generates a set of heterogeneous pipeline templates and instantiates at least $f+1$ logically equivalent pipeline replicas to tolerate any $f$ simultaneous failures. During execution, it relies on already-replicated model states across the replicas to provide fast recovery. Oobleck provably guarantees that some combination of the initially created pipeline templates can be used to cover all available resources after $f$ or fewer simultaneous failures, thereby avoiding resource idling at all times. Evaluation on large DNN models with billions of parameters shows that Oobleck provides consistently high throughput, and it outperforms state-of-the-art fault tolerance solutions like Bamboo and Varuna by up to $13.9x$.
Hardware-firmware co-verification is critical to design trustworthy systems. While formal methods can provide verification guarantees, due to the complexity of firmware and hardware, it can lead to state space explosion. There are promising avenues to reduce the state space during firmware verification through manual abstraction of hardware or manual generation of hints. Manual development of abstraction or hints requires domain expertise and can be time-consuming and error-prone, leading to incorrect proofs or inaccurate results. In this paper, we effectively combine the scalability of simulation-based validation and the completeness of formal verification. Our proposed approach is applicable to actual firmware and hardware implementations without requiring any manual intervention during formal model generation or hint extraction. To reduce the state space complexity, we utilize both static module-level analysis and dynamic execution of verification scenarios to automatically generate system-level hints. These hints guide the underlying solver to perform scalable equivalence checking using proofs. The extracted hints are validated against the implementation before using them in the proofs. Experimental evaluation on RISC-V based systems demonstrates that our proposed framework is scalable due to scenario-based decomposition and automated hint extraction. Moreover, our fully automated framework can identify complex bugs in actual firmware-hardware implementations.
Most of the existing work in one-stage referring expression comprehension (REC) mainly focuses on multi-modal fusion and reasoning, while the influence of other factors in this task lacks in-depth exploration. To fill this gap, we conduct an empirical study in this paper. Concretely, we first build a very simple REC network called SimREC, and ablate 42 candidate designs/settings, which covers the entire process of one-stage REC from network design to model training. Afterwards, we conduct over 100 experimental trials on three benchmark datasets of REC. The extensive experimental results not only show the key factors that affect REC performance in addition to multi-modal fusion, e.g., multi-scale features and data augmentation, but also yield some findings that run counter to conventional understanding. For example, as a vision and language (V&L) task, REC does is less impacted by language prior. In addition, with a proper combination of these findings, we can improve the performance of SimREC by a large margin, e.g., +27.12% on RefCOCO+, which outperforms all existing REC methods. But the most encouraging finding is that with much less training overhead and parameters, SimREC can still achieve better performance than a set of large-scale pre-trained models, e.g., UNITER and VILLA, portraying the special role of REC in existing V&L research.
Inverse rendering methods aim to estimate geometry, materials and illumination from multi-view RGB images. In order to achieve better decomposition, recent approaches attempt to model indirect illuminations reflected from different materials via Spherical Gaussians (SG), which, however, tends to blur the high-frequency reflection details. In this paper, we propose an end-to-end inverse rendering pipeline that decomposes materials and illumination from multi-view images, while considering near-field indirect illumination. In a nutshell, we introduce the Monte Carlo sampling based path tracing and cache the indirect illumination as neural radiance, enabling a physics-faithful and easy-to-optimize inverse rendering method. To enhance efficiency and practicality, we leverage SG to represent the smooth environment illuminations and apply importance sampling techniques. To supervise indirect illuminations from unobserved directions, we develop a novel radiance consistency constraint between implicit neural radiance and path tracing results of unobserved rays along with the joint optimization of materials and illuminations, thus significantly improving the decomposition performance. Extensive experiments demonstrate that our method outperforms the state-of-the-art on multiple synthetic and real datasets, especially in terms of inter-reflection decomposition.Our code and data are available at //woolseyyy.github.io/nefii/.
Research on dynamics of robotic manipulators provides promising support for model-based control. In general, rigorous first-principles-based dynamics modeling and accurate identification of mechanism parameters are critical to achieving high precision in model-based control, while data-driven model reconstruction provides alternative approaches of the above process. Taking the level of activation of data as an indicator, this paper classifies the collected robotic manipulator data by means of K-means clustering algorithm. With the fundamental prior knowledge, we find the corresponding dynamical properties behind the classified data separately. Afterwards, the sparse identification of nonlinear dynamics (SINDy) method is used to reconstruct the dynamics model of the robotic manipulator step by step according to the activation level of the classified data. The simulation results show that the proposed method not only reduces the complexity of the basis function library, enabling the application of SINDy method to multi-degree-of-freedom robotic manipulators, but also decreases the influence of data noise on the regression results. Finally, the dynamic control based on the reconfigured model is deployed on the experimental platform, and the experimental results prove the effectiveness of the proposed method.
Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.
With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.
With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.
Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.