This report summarizes the discussions and conclusions of a 2-day multidisciplinary workshop that brought together researchers and practitioners in healthcare, computer science, and social sciences to explore what lessons were learned and what actions, primarily in research, could be taken. One consistent observation was that there is significant merit in thinking not only about pandemic situations, but also about peacetime advances, as many healthcare networks and communities are now in a perpetual state of crisis. Attendees discussed how the COVID-19 pandemic amplified gaps in our health and computing systems, and how current and future computing technologies could fill these gaps and improve the trajectory of the next pandemic. Three major computing themes emerged from the workshop: models, data, and infrastructure. Computational models are extremely important during pandemics, from anticipating supply needs of hospitals, to determining the care capacity of hospital and social service providers, to projecting the spread of the disease. Accurate, reliable models can save lives, and inform community leaders on policy decisions. Health system users require accurate, reliable data to achieve success when applying models. This requires data and measurement standardization across health care organizations, modernizing the data infrastructure, and methods for ensuring data remains private while shared for model development, validation, and application. Finally, many health care systems lack the data, compute, and communication infrastructures required to build models on their data, use those models in ordinary operations, or even to reliably access their data. Robust and timely computing research has the potential to better support healthcare works to save lives in times of crisis (e.g., pandemics) and today during relative peacetime.
Deep subspace clustering methods are now prominent in clustering, typically using fully connected networks and a self-representation loss function. However, these methods often struggle with overfitting and lack interpretability. In this paper, we explore an alternative clustering approach based on deep unfolding. By unfolding iterative optimization methods into neural networks, this approach offers enhanced interpretability and reliability compared to data-driven deep learning methods, and greater adaptability and generalization than model-based approaches. Hence, unfolding has become widely used in inverse imaging problems, such as image restoration, reconstruction, and super-resolution, but has not been sufficiently explored yet in the context of clustering. In this work, we introduce an innovative clustering architecture for hyperspectral images (HSI) by unfolding an iterative solver based on the Alternating Direction Method of Multipliers (ADMM) for sparse subspace clustering. To our knowledge, this is the first attempt to apply unfolding ADMM for computing the self-representation matrix in subspace clustering. Moreover, our approach captures well the structural characteristics of HSI data by employing the K nearest neighbors algorithm as part of a structure preservation module. Experimental evaluation of three established HSI datasets shows clearly the potential of the unfolding approach in HSI clustering and even demonstrates superior performance compared to state-of-the-art techniques.
Generating proofs of unsatisfiability is a valuable capability of most SAT solvers, and is an active area of research for SMT solvers. This paper introduces the first method to efficiently generate proofs of unsatisfiability specifically for an important subset of SMT: SAT Modulo Monotonic Theories (SMMT), which includes many useful finite-domain theories (e.g., bit vectors and many graph-theoretic properties) and is used in production at Amazon Web Services. Our method uses propositional definitions of the theory predicates, from which it generates compact Horn approximations of the definitions, which lead to efficient DRAT proofs, leveraging the large investment the SAT community has made in DRAT. In experiments on practical SMMT problems, our proof generation overhead is minimal (7.41% geometric mean slowdown, 28.8% worst-case), and we can generate and check proofs for many problems that were previously intractable.
Scientific articles play a crucial role in advancing knowledge and informing research directions. One key aspect of evaluating scientific articles is the analysis of citations, which provides insights into the impact and reception of the cited works. This article introduces the innovative use of large language models, particularly ChatGPT, for comprehensive sentiment analysis of citations within scientific articles. By leveraging advanced natural language processing (NLP) techniques, ChatGPT can discern the nuanced positivity or negativity of citations, offering insights into the reception and impact of cited works. Furthermore, ChatGPT's capabilities extend to detecting potential biases and conflicts of interest in citations, enhancing the objectivity and reliability of scientific literature evaluation. This study showcases the transformative potential of artificial intelligence (AI)-powered tools in enhancing citation analysis and promoting integrity in scholarly research.
The rapid advance of deep reinforcement learning techniques enables the oversight of safety-critical systems through the utilization of Deep Neural Networks (DNNs). This underscores the pressing need to promptly establish certified safety guarantees for such DNN-controlled systems. Most of the existing verification approaches rely on qualitative approaches, predominantly employing reachability analysis. However, qualitative verification proves inadequate for DNN-controlled systems as their behaviors exhibit stochastic tendencies when operating in open and adversarial environments. In this paper, we propose a novel framework for unifying both qualitative and quantitative safety verification problems of DNN-controlled systems. This is achieved by formulating the verification tasks as the synthesis of valid neural barrier certificates (NBCs). Initially, the framework seeks to establish almost-sure safety guarantees through qualitative verification. In cases where qualitative verification fails, our quantitative verification method is invoked, yielding precise lower and upper bounds on probabilistic safety across both infinite and finite time horizons. To facilitate the synthesis of NBCs, we introduce their $k$-inductive variants. We also devise a simulation-guided approach for training NBCs, aiming to achieve tightness in computing precise certified lower and upper bounds. We prototype our approach into a tool called $\textsf{UniQQ}$ and showcase its efficacy on four classic DNN-controlled systems.
In this paper, we propose a method and workflow for automating regression testing of certain video game aspects using automated planning and incremental action model learning techniques. The basic idea is to use detailed game logs and incremental action model learning techniques to maintain a formal model in the planning domain description language (PDDL) of the gameplay mechanics. The workflow enables efficient cooperation of game developers without any experience with PDDL or other formal systems and a person experienced with PDDL modeling but no game development skills. We describe the method and workflow in general and then demonstrate it on a concrete proof-of-concept example -- a simple role-playing game provided as one of the tutorial projects in the popular game development engine Unity. This paper presents the first step towards minimizing or even eliminating the need for a modeling expert in the workflow, thus making automated planning accessible to a broader audience.
Recent statistical and reinforcement learning methods have significantly advanced patient care strategies. However, these approaches face substantial challenges in high-stakes contexts, including missing data, inherent stochasticity, and the critical requirements for interpretability and patient safety. Our work operationalizes a safe and interpretable framework to identify optimal treatment regimes. This approach involves matching patients with similar medical and pharmacological characteristics, allowing us to construct an optimal policy via interpolation. We perform a comprehensive simulation study to demonstrate the framework's ability to identify optimal policies even in complex settings. Ultimately, we operationalize our approach to study regimes for treating seizures in critically ill patients. Our findings strongly support personalized treatment strategies based on a patient's medical history and pharmacological features. Notably, we identify that reducing medication doses for patients with mild and brief seizure episodes while adopting aggressive treatment for patients in intensive care unit experiencing intense seizures leads to more favorable outcomes.
We study evaluating a policy under best- and worst-case perturbations to a Markov decision process (MDP), given transition observations from the original MDP, whether under the same or different policy. This is an important problem when there is the possibility of a shift between historical and future environments, due to e.g. unmeasured confounding, distributional shift, or an adversarial environment. We propose a perturbation model that can modify transition kernel densities up to a given multiplicative factor or its reciprocal, which extends the classic marginal sensitivity model (MSM) for single time step decision making to infinite-horizon RL. We characterize the sharp bounds on policy value under this model, that is, the tightest possible bounds given by the transition observations from the original MDP, and we study the estimation of these bounds from such transition observations. We develop an estimator with several appealing guarantees: it is semiparametrically efficient, and remains so even when certain necessary nuisance functions such as worst-case Q-functions are estimated at slow nonparametric rates. It is also asymptotically normal, enabling easy statistical inference using Wald confidence intervals. In addition, when certain nuisances are estimated inconsistently we still estimate a valid, albeit possibly not sharp bounds on the policy value. We validate these properties in numeric simulations. The combination of accounting for environment shifts from train to test (robustness), being insensitive to nuisance-function estimation (orthogonality), and accounting for having only finite samples to learn from (inference) together leads to credible and reliable policy evaluation.
State-of-the-art natural language processing (NLP) models are trained on massive training corpora, and report a superlative performance on evaluation datasets. This survey delves into an important attribute of these datasets: the dialect of a language. Motivated by the performance degradation of NLP models for dialectic datasets and its implications for the equity of language technologies, we survey past research in NLP for dialects in terms of datasets, and approaches. We describe a wide range of NLP tasks in terms of two categories: natural language understanding (NLU) (for tasks such as dialect classification, sentiment analysis, parsing, and NLU benchmarks) and natural language generation (NLG) (for summarisation, machine translation, and dialogue systems). The survey is also broad in its coverage of languages which include English, Arabic, German among others. We observe that past work in NLP concerning dialects goes deeper than mere dialect classification, and . This includes early approaches that used sentence transduction that lead to the recent approaches that integrate hypernetworks into LoRA. We expect that this survey will be useful to NLP researchers interested in building equitable language technologies by rethinking LLM benchmarks and model architectures.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
Recent developments in image classification and natural language processing, coupled with the rapid growth in social media usage, have enabled fundamental advances in detecting breaking events around the world in real-time. Emergency response is one such area that stands to gain from these advances. By processing billions of texts and images a minute, events can be automatically detected to enable emergency response workers to better assess rapidly evolving situations and deploy resources accordingly. To date, most event detection techniques in this area have focused on image-only or text-only approaches, limiting detection performance and impacting the quality of information delivered to crisis response teams. In this paper, we present a new multimodal fusion method that leverages both images and texts as input. In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities on a sample by sample basis. In addition, we employ a multimodal graph-based approach to stochastically transition between embeddings of different multimodal pairs during training to better regularize the learning process as well as dealing with limited training data by constructing new matched pairs from different samples. We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.