亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Safety analysis is used to identify hazards and build knowledge during the design phase of safety-relevant functions. This is especially true for complex AI-enabled and software intensive systems such as Autonomous Drive (AD). System-Theoretic Process Analysis (STPA) is a novel method applied in safety-related fields like defense and aerospace, which is also becoming popular in the automotive industry. However, STPA assumes prerequisites that are not fully valid in the automotive system engineering with distributed system development and multi-abstraction design levels. This would inhibit software developers from using STPA to analyze their software as part of a bigger system, resulting in a lack of traceability. This can be seen as a maintainability challenge in continuous development and deployment (DevOps). In this paper, STPA's different guidelines for the automotive industry, e.g. J31887/ISO21448/STPA handbook, are firstly compared to assess their applicability to the distributed development of complex AI-enabled systems like AD. Further, an approach to overcome the challenges of using STPA in a multi-level design context is proposed. By conducting an interview study with automotive industry experts for the development of AD, the challenges are validated and the effectiveness of the proposed approach is evaluated.

相關內容

Capability ontologies are increasingly used to model functionalities of systems or machines. The creation of such ontological models with all properties and constraints of capabilities is very complex and can only be done by ontology experts. However, Large Language Models (LLMs) have shown that they can generate machine-interpretable models from natural language text input and thus support engineers / ontology experts. Therefore, this paper investigates how LLMs can be used to create capability ontologies. We present a study with a series of experiments in which capabilities with varying complexities are generated using different prompting techniques and with different LLMs. Errors in the generated ontologies are recorded and compared. To analyze the quality of the generated ontologies, a semi-automated approach based on RDF syntax checking, OWL reasoning, and SHACL constraints is used. The results of this study are very promising because even for complex capabilities, the generated ontologies are almost free of errors.

There is growing recognition among financial institutions, financial regulators and policy makers of the importance of addressing nature-related risks and opportunities. Evaluating and assessing nature-related risks for financial institutions is challenging due to the large volume of heterogeneous data available on nature and the complexity of investment value chains and the various components' relationship to nature. The dual problem of scaling data analytics and analysing complex systems can be addressed using Artificial Intelligence (AI). We address issues such as plugging existing data gaps with discovered data, data estimation under uncertainty, time series analysis and (near) real-time updates. This report presents potential AI solutions for models of two distinct use cases, the Brazil Beef Supply Use Case and the Water Utility Use Case. Our two use cases cover a broad perspective within sustainable finance. The Brazilian cattle farming use case is an example of greening finance - integrating nature-related considerations into mainstream financial decision-making to transition investments away from sectors with poor historical track records and unsustainable operations. The deployment of nature-based solutions in the UK water utility use case is an example of financing green - driving investment to nature-positive outcomes. The two use cases also cover different sectors, geographies, financial assets and AI modelling techniques, providing an overview on how AI could be applied to different challenges relating to nature's integration into finance. This report is primarily aimed at financial institutions but is also of interest to ESG data providers, TNFD, systems modellers, and, of course, AI practitioners.

Balancing accuracy with computational efficiency is paramount in machine learning, particularly when dealing with high-dimensional data, such as spatial-temporal datasets. This study introduces ST-MambaSync, an innovative framework that integrates a streamlined attention layer with a simplified state-space layer. The model achieves competitive accuracy in spatial-temporal prediction tasks. We delve into the relationship between attention mechanisms and the Mamba component, revealing that Mamba functions akin to attention within a residual network structure. This comparative analysis underpins the efficiency of state-space models, elucidating their capability to deliver superior performance at reduced computational costs.

Multi-modal foundation models such as CLIP have showcased impressive zero-shot capabilities. However, their applicability in resource-constrained environments is limited due to their large number of parameters and high inference time. While existing approaches have scaled down the entire CLIP architecture, we focus on training smaller variants of the image encoder, which suffices for efficient zero-shot classification. The use of synthetic data has shown promise in distilling representations from larger teachers, resulting in strong few-shot and linear probe performance. However, we find that this approach surprisingly fails in true zero-shot settings when using contrastive losses. We identify the exploitation of spurious features as being responsible for poor generalization between synthetic and real data. However, by using the image feature-based L2 distillation loss, we mitigate these problems and train students that achieve zero-shot performance which on four domain-specific datasets is on-par with a ViT-B/32 teacher model trained on DataCompXL, while featuring up to 92% fewer parameters.

Procedural noise is a fundamental component of computer graphics pipelines, offering a flexible way to generate textures that exhibit "natural" random variation. Many different types of noise exist, each produced by a separate algorithm. In this paper, we present a single generative model which can learn to generate multiple types of noise as well as blend between them. In addition, it is capable of producing spatially-varying noise blends despite not having access to such data for training. These features are enabled by training a denoising diffusion model using a novel combination of data augmentation and network conditioning techniques. Like procedural noise generators, the model's behavior is controllable via interpretable parameters and a source of randomness. We use our model to produce a variety of visually compelling noise textures. We also present an application of our model to improving inverse procedural material design; using our model in place of fixed-type noise nodes in a procedural material graph results in higher-fidelity material reconstructions without needing to know the type of noise in advance.

HERITRACE is a semantic data management system tailored for the GLAM sector. It is engineered to streamline data curation for non-technical users while also offering an efficient administrative interface for technical staff. The paper compares HERITRACE with other established platforms such as OmekaS, Semantic MediaWiki, Research Space, and CLEF, emphasizing its advantages in user friendliness, provenance management, change tracking, customization capabilities, and data integration. The system leverages SHACL for data modeling and employs the OpenCitations Data Model (OCDM) for provenance and change tracking, ensuring a harmonious blend of advanced technical features and user accessibility. Future developments include the integration of a robust authentication system and the expansion of data compatibility via the RDF Mapping Language (RML), enhancing HERITRACE's utility in digital heritage management.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司