亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We suggest the implementation of the Dual Use Research of Concern (DURC) framework, originally designed for life sciences, to the domain of generative AI, with a specific focus on Large Language Models (LLMs). With its demonstrated advantages and drawbacks in biological research, we believe the DURC criteria can be effectively redefined for LLMs, potentially contributing to improved AI governance. Acknowledging the balance that must be struck when employing the DURC framework, we highlight its crucial political role in enhancing societal awareness of the impact of generative AI. As a final point, we offer a series of specific recommendations for applying the DURC approach to LLM research.

相關內容

大(da)語(yu)(yu)(yu)言(yan)(yan)模(mo)型(xing)是基于海量(liang)文(wen)(wen)(wen)本(ben)(ben)數據訓練的(de)深(shen)度學習模(mo)型(xing)。它(ta)不(bu)僅能夠生(sheng)成自然語(yu)(yu)(yu)言(yan)(yan)文(wen)(wen)(wen)本(ben)(ben),還能夠深(shen)入理解(jie)(jie)文(wen)(wen)(wen)本(ben)(ben)含義,處理各(ge)種自然語(yu)(yu)(yu)言(yan)(yan)任務(wu),如文(wen)(wen)(wen)本(ben)(ben)摘要(yao)、問答、翻(fan)譯(yi)等(deng)。2023年,大(da)語(yu)(yu)(yu)言(yan)(yan)模(mo)型(xing)及其(qi)在(zai)人(ren)工(gong)智能領域的(de)應用已成為(wei)全球科技研究(jiu)的(de)熱點,其(qi)在(zai)規模(mo)上(shang)的(de)增(zeng)長尤(you)為(wei)引(yin)人(ren)注目,參數量(liang)已從最(zui)初的(de)十幾億躍(yue)升(sheng)到如今的(de)一萬億。參數量(liang)的(de)提升(sheng)使得模(mo)型(xing)能夠更加精細地捕捉人(ren)類語(yu)(yu)(yu)言(yan)(yan)微妙之處,更加深(shen)入地理解(jie)(jie)人(ren)類語(yu)(yu)(yu)言(yan)(yan)的(de)復雜性。在(zai)過去的(de)一年里,大(da)語(yu)(yu)(yu)言(yan)(yan)模(mo)型(xing)在(zai)吸納(na)新知識(shi)、分解(jie)(jie)復雜任務(wu)以(yi)及圖文(wen)(wen)(wen)對(dui)齊等(deng)多方(fang)面都有顯著提升(sheng)。隨著技術的(de)不(bu)斷成熟,它(ta)將不(bu)斷拓展其(qi)應用范圍,為(wei)人(ren)類提供更加智能化和(he)個性化的(de)服務(wu),進一步改善人(ren)們的(de)生(sheng)活和(he)生(sheng)產方(fang)式。

This systematic review aims to provide a comprehensive analysis of the state of data-to-text generation research, focusing on identifying research gaps, offering future directions, and addressing challenges found during the review. We thoroughly examined the literature, including approaches, datasets, evaluation metrics, applications, multilingualism, and hallucination mitigation measures. Our review provides a roadmap for future research in this rapidly evolving field.

To evaluate code large language models (LLMs), research has relied on a few small manually curated benchmarks, such as HumanEval and MBPP, which represent a narrow part of the real-world software domains. In this work, we introduce round-trip correctness (RTC) as an alternative evaluation method. RTC allows Code LLM evaluation on a broader spectrum of real-world software domains without the need for costly human curation. RTC rests on the idea that we can ask a model to make a prediction (e.g., describe some code using natural language), feed that prediction back (e.g., synthesize code from the predicted description), and check if this round-trip leads to code that is semantically equivalent to the original input. We show how to employ RTC to evaluate code synthesis and editing. We find that RTC strongly correlates with model performance on existing narrow-domain code synthesis benchmarks while allowing us to expand to a much broader set of domains and tasks which was not previously possible without costly human annotations.

Advances towards more faithful and traceable answers of Large Language Models (LLMs) are crucial for various research and practical endeavors. One avenue in reaching this goal is basing the answers on reliable sources. However, this Evidence-Based QA has proven to work insufficiently with LLMs in terms of citing the correct sources (source quality) and truthfully representing the information within sources (answer attributability). In this work, we systematically investigate how to robustly fine-tune LLMs for better source quality and answer attributability. Specifically, we introduce a data generation pipeline with automated data quality filters, which can synthesize diversified high-quality training and testing data at scale. We further introduce four test sets to benchmark the robustness of fine-tuned specialist models. Extensive evaluation shows that fine-tuning on synthetic data improves performance on both in- and out-of-distribution. %Evidence-Based QA cases. Furthermore, we show that data quality, which can be drastically improved by proposed quality filters, matters more than quantity in improving Evidence-Based QA.

In the midst of the rapid integration of artificial intelligence (AI) into real world applications, one pressing challenge we confront is the phenomenon of model drift, wherein the performance of AI models gradually degrades over time, compromising their effectiveness in real-world, dynamic environments. Once identified, we need techniques for handling this drift to preserve the model performance and prevent further degradation. This study investigates two prominent quality aware strategies to combat model drift: data quality assessment and data conditioning based on prior model knowledge. The former leverages image quality assessment metrics to meticulously select high-quality training data, improving the model robustness, while the latter makes use of learned feature vectors from existing models to guide the selection of future data, aligning it with the model's prior knowledge. Through comprehensive experimentation, this research aims to shed light on the efficacy of these approaches in enhancing the performance and reliability of semantic segmentation models, thereby contributing to the advancement of computer vision capabilities in real-world scenarios.

The expressivity of Graph Neural Networks (GNNs) has been studied broadly in recent years to reveal the design principles for more powerful GNNs. Graph canonization is known as a typical approach to distinguish non-isomorphic graphs, yet rarely adopted when developing expressive GNNs. This paper proposes to maximize the expressivity of GNNs by graph canonization, then the power of such GNNs is studies from the perspective of model stability. A stable GNN will map similar graphs to close graph representations in the vectorial space, and the stability of GNNs is critical to generalize their performance to unseen graphs. We theoretically reveal the trade-off of expressivity and stability in graph-canonization-enhanced GNNs. Then we introduce a notion of universal graph canonization as the general solution to address the trade-off and characterize a widely applicable sufficient condition to solve the universal graph canonization. A comprehensive set of experiments demonstrates the effectiveness of the proposed method. In many popular graph benchmark datasets, graph canonization successfully enhances GNNs and provides highly competitive performance, indicating the capability and great potential of proposed method in general graph representation learning. In graph datasets where the sufficient condition holds, GNNs enhanced by universal graph canonization consistently outperform GNN baselines and successfully improve the SOTA performance up to $31\%$, providing the optimal solution to numerous challenging real-world graph analytical tasks like gene network representation learning in bioinformatics.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

北京阿比特科技有限公司