We present a novel attack against the Combined Charging System, one of the most widely used DC rapid charging technologies for electric vehicles (EVs). Our attack, Brokenwire, interrupts necessary control communication between the vehicle and charger, causing charging sessions to abort. The attack requires only temporary physical proximity and can be conducted wirelessly from a distance, allowing individual vehicles or entire fleets to be disrupted stealthily and simultaneously. In addition, it can be mounted with off-the-shelf radio hardware and minimal technical knowledge. By exploiting CSMA/CA behavior, only a very weak signal needs to be induced into the victim to disrupt communication - exceeding the effectiveness of broadband noise jamming by three orders of magnitude. The exploited behavior is a required part of the HomePlug Green PHY, DIN 70121 & ISO 15118 standards and all known implementations exhibit it. We first study the attack in a controlled testbed and then demonstrate it against eight vehicles and 20 chargers in real deployments. We find the attack to be successful in the real world, at ranges up to 47 m, for a power budget of less than 1 W. We further show that the attack can work between the floors of a building (e.g., multi-story parking), through perimeter fences, and from `drive-by' attacks. We present a heuristic model to estimate the number of vehicles that can be attacked simultaneously for a given output power. Brokenwire has immediate implications for a substantial proportion of the around 12 million battery EVs on the roads worldwide - and profound effects on the new wave of electrification for vehicle fleets, both for private enterprise and crucial public services, as well as electric buses, trucks and small ships. As such, we conducted a disclosure to the industry and discussed a range of mitigation techniques that could be deployed to limit the impact.
Video podcast teasers are short videos that can be shared on social media platforms to capture interest in the full episodes of a video podcast. These teasers enable long-form podcasters to reach new audiences and gain new followers. However, creating a compelling teaser from an hour-long episode is challenging. Selecting interesting clips requires significant mental effort; editing the chosen clips into a cohesive, well-produced teaser is time-consuming. To support the creation of video podcast teasers, we first investigate what makes a good teaser. We combine insights from both audience comments and creator interviews to determine a set of essential ingredients. We also identify a common workflow shared by creators during the process. Based on these findings, we introduce a human-AI co-creative tool called PodReels to assist video podcasters in creating teasers. Our user study shows that PodReels significantly reduces creators' mental demand and improves their efficiency in producing video podcast teasers.
This article presents the world's first rapid drone flocking control using natural language through generative AI. The described approach enables the intuitive orchestration of a flock of any size to achieve the desired geometry. The key feature of the method is the development of a new interface based on Large Language Models to communicate with the user and to generate the target geometry descriptions. Users can interactively modify or provide comments during the construction of the flock geometry model. By combining flocking technology and defining the target surface using a signed distance function, smooth and adaptive movement of the drone swarm between target states is achieved. Our user study on FlockGPT confirmed a high level of intuitive control over drone flocking by users. Subjects who had never previously controlled a swarm of drones were able to construct complex figures in just a few iterations and were able to accurately distinguish the formed swarm drone figures. The results revealed a high recognition rate for six different geometric patterns generated through the LLM-based interface and performed by a simulated drone flock (mean of 80% with a maximum of 93\% for cube and tetrahedron patterns). Users commented on low temporal demand (19.2 score in NASA-TLX), high performance (26 score in NASA-TLX), attractiveness (1.94 UEQ score), and hedonic quality (1.81 UEQ score) of the developed system. The FlockGPT demo code repository can be found at: coming soon
Neural Radiance Fields (NeRF) have emerged as a powerful paradigm for 3D scene representation, offering high-fidelity renderings and reconstructions from a set of sparse and unstructured sensor data. In the context of autonomous robotics, where perception and understanding of the environment are pivotal, NeRF holds immense promise for improving performance. In this paper, we present a comprehensive survey and analysis of the state-of-the-art techniques for utilizing NeRF to enhance the capabilities of autonomous robots. We especially focus on the perception, localization and navigation, and decision-making modules of autonomous robots and delve into tasks crucial for autonomous operation, including 3D reconstruction, segmentation, pose estimation, simultaneous localization and mapping (SLAM), navigation and planning, and interaction. Our survey meticulously benchmarks existing NeRF-based methods, providing insights into their strengths and limitations. Moreover, we explore promising avenues for future research and development in this domain. Notably, we discuss the integration of advanced techniques such as 3D Gaussian splatting (3DGS), large language models (LLM), and generative AIs, envisioning enhanced reconstruction efficiency, scene understanding, decision-making capabilities. This survey serves as a roadmap for researchers seeking to leverage NeRFs to empower autonomous robots, paving the way for innovative solutions that can navigate and interact seamlessly in complex environments.
Temporal information plays a pivotal role in Bird's-Eye-View (BEV) driving scene understanding, which can alleviate the visual information sparsity. However, the indiscriminate temporal fusion method will cause the barrier of feature redundancy when constructing vectorized High-Definition (HD) maps. In this paper, we revisit the temporal fusion of vectorized HD maps, focusing on temporal instance consistency and temporal map consistency learning. To improve the representation of instances in single-frame maps, we introduce a novel method, DTCLMapper. This approach uses a dual-stream temporal consistency learning module that combines instance embedding with geometry maps. In the instance embedding component, our approach integrates temporal Instance Consistency Learning (ICL), ensuring consistency from vector points and instance features aggregated from points. A vectorized points pre-selection module is employed to enhance the regression efficiency of vector points from each instance. Then aggregated instance features obtained from the vectorized points preselection module are grounded in contrastive learning to realize temporal consistency, where positive and negative samples are selected based on position and semantic information. The geometry mapping component introduces Map Consistency Learning (MCL) designed with self-supervised learning. The MCL enhances the generalization capability of our consistent learning approach by concentrating on the global location and distribution constraints of the instances. Extensive experiments on well-recognized benchmarks indicate that the proposed DTCLMapper achieves state-of-the-art performance in vectorized mapping tasks, reaching 61.9% and 65.1% mAP scores on the nuScenes and Argoverse datasets, respectively. The source code will be made publicly available at //github.com/lynn-yu/DTCLMapper.
We propose the Adversarial DEep Learning Transpiler (ADELT), a novel approach to source-to-source transpilation between deep learning frameworks. ADELT uniquely decouples code skeleton transpilation and API keyword mapping. For code skeleton transpilation, it uses few-shot prompting on large language models (LLMs), while for API keyword mapping, it uses contextual embeddings from a code-specific BERT. These embeddings are trained in a domain-adversarial setup to generate a keyword translation dictionary. ADELT is trained on an unlabeled web-crawled deep learning corpus, without relying on any hand-crafted rules or parallel data. It outperforms state-of-the-art transpilers, improving pass@1 rate by 17.4 pts and 15.0 pts for PyTorch-Keras and PyTorch-MXNet transpilation pairs respectively. We provide open access to our code at //github.com/gonglinyuan/adelt.
The rapid advancement of Large Language Models (LLMs) has opened up new opportunities for leveraging artificial intelligence in various domains, including cybersecurity. As the volume and sophistication of cyber threats continue to grow, there is an increasing need for intelligent systems that can automatically detect vulnerabilities, analyze malware, and respond to attacks. In this survey, we conduct a comprehensive review of the literature on the application of LLMs in cybersecurity (LLM4Security). By comprehensively collecting over 30K relevant papers and systematically analyzing 127 papers from top security and software engineering venues, we aim to provide a holistic view of how LLMs are being used to solve diverse problems across the cybersecurity domain. Through our analysis, we identify several key findings. First, we observe that LLMs are being applied to a wide range of cybersecurity tasks, including vulnerability detection, malware analysis, network intrusion detection, and phishing detection. Second, we find that the datasets used for training and evaluating LLMs in these tasks are often limited in size and diversity, highlighting the need for more comprehensive and representative datasets. Third, we identify several promising techniques for adapting LLMs to specific cybersecurity domains, such as fine-tuning, transfer learning, and domain-specific pre-training. Finally, we discuss the main challenges and opportunities for future research in LLM4Security, including the need for more interpretable and explainable models, the importance of addressing data privacy and security concerns, and the potential for leveraging LLMs for proactive defense and threat hunting. Overall, our survey provides a comprehensive overview of the current state-of-the-art in LLM4Security and identifies several promising directions for future research.
We present and tackle the problem of Embodied Question Answering (EQA) with Situational Queries (S-EQA) in a household environment. Unlike prior EQA work tackling simple queries that directly reference target objects and quantifiable properties pertaining them, EQA with situational queries (such as "Is the bathroom clean and dry?") is more challenging, as the agent needs to figure out not just what the target objects pertaining to the query are, but also requires a consensus on their states to be answerable. Towards this objective, we first introduce a novel Prompt-Generate-Evaluate (PGE) scheme that wraps around an LLM's output to create a dataset of unique situational queries, corresponding consensus object information, and predicted answers. PGE maintains uniqueness among the generated queries, using multiple forms of semantic similarity. We validate the generated dataset via a large scale user-study conducted on M-Turk, and introduce it as S-EQA, the first dataset tackling EQA with situational queries. Our user study establishes the authenticity of S-EQA with a high 97.26% of the generated queries being deemed answerable, given the consensus object data. Conversely, we observe a low correlation of 46.2% on the LLM-predicted answers to human-evaluated ones; indicating the LLM's poor capability in directly answering situational queries, while establishing S-EQA's usability in providing a human-validated consensus for an indirect solution. We evaluate S-EQA via Visual Question Answering (VQA) on VirtualHome, which unlike other simulators, contains several objects with modifiable states that also visually appear different upon modification -- enabling us to set a quantitative benchmark for S-EQA. To the best of our knowledge, this is the first work to introduce EQA with situational queries, and also the first to use a generative approach for query creation.
Recently, Graph Convolutional Network (GCN) has become a novel state-of-art for Collaborative Filtering (CF) based Recommender Systems (RS). It is a common practice to learn informative user and item representations by performing embedding propagation on a user-item bipartite graph, and then provide the users with personalized item suggestions based on the representations. Despite effectiveness, existing algorithms neglect precious interactive features between user-item pairs in the embedding process. When predicting a user's preference for different items, they still aggregate the user tree in the same way, without emphasizing target-related information in the user neighborhood. Such a uniform aggregation scheme easily leads to suboptimal user and item representations, limiting the model expressiveness to some extent. In this work, we address this problem by building bilateral interactive guidance between each user-item pair and proposing a new model named IA-GCN (short for InterActive GCN). Specifically, when learning the user representation from its neighborhood, we assign higher attention weights to those neighbors similar to the target item. Correspondingly, when learning the item representation, we pay more attention to those neighbors resembling the target user. This leads to interactive and interpretable features, effectively distilling target-specific information through each graph convolutional operation. Our model is built on top of LightGCN, a state-of-the-art GCN model for CF, and can be combined with various GCN-based CF architectures in an end-to-end fashion. Extensive experiments on three benchmark datasets demonstrate the effectiveness and robustness of IA-GCN.
The rapid advances in Vision Transformer (ViT) refresh the state-of-the-art performances in various vision tasks, overshadowing the conventional CNN-based models. This ignites a few recent striking-back research in the CNN world showing that pure CNN models can achieve as good performance as ViT models when carefully tuned. While encouraging, designing such high-performance CNN models is challenging, requiring non-trivial prior knowledge of network design. To this end, a novel framework termed Mathematical Architecture Design for Deep CNN (DeepMAD) is proposed to design high-performance CNN models in a principled way. In DeepMAD, a CNN network is modeled as an information processing system whose expressiveness and effectiveness can be analytically formulated by their structural parameters. Then a constrained mathematical programming (MP) problem is proposed to optimize these structural parameters. The MP problem can be easily solved by off-the-shelf MP solvers on CPUs with a small memory footprint. In addition, DeepMAD is a pure mathematical framework: no GPU or training data is required during network design. The superiority of DeepMAD is validated on multiple large-scale computer vision benchmark datasets. Notably on ImageNet-1k, only using conventional convolutional layers, DeepMAD achieves 0.7% and 1.5% higher top-1 accuracy than ConvNeXt and Swin on Tiny level, and 0.8% and 0.9% higher on Small level.
Evaluating the quality of learned representations without relying on a downstream task remains one of the challenges in representation learning. In this work, we present Geometric Component Analysis (GeomCA) algorithm that evaluates representation spaces based on their geometric and topological properties. GeomCA can be applied to representations of any dimension, independently of the model that generated them. We demonstrate its applicability by analyzing representations obtained from a variety of scenarios, such as contrastive learning models, generative models and supervised learning models.