Optimization is often cast as a deterministic problem, where the solution is found through some iterative procedure such as gradient descent. However, when training neural networks the loss function changes over (iteration) time due to the randomized selection of a subset of the samples. This randomization turns the optimization problem into a stochastic one. We propose to consider the loss as a noisy observation with respect to some reference optimum. This interpretation of the loss allows us to adopt Kalman filtering as an optimizer, as its recursive formulation is designed to estimate unknown parameters from noisy measurements. Moreover, we show that the Kalman Filter dynamical model for the evolution of the unknown parameters can be used to capture the gradient dynamics of advanced methods such as Momentum and Adam. We call this stochastic optimization method KOALA, which is short for Kalman Optimization Algorithm with Loss Adaptivity. KOALA is an easy to implement, scalable, and efficient method to train neural networks. We provide convergence analysis and show experimentally that it yields parameter estimates that are on par with or better than existing state of the art optimization algorithms across several neural network architectures and machine learning tasks, such as computer vision and language modeling.
Implicit deep learning has received increasing attention recently due to the fact that it generalizes the recursive prediction rules of many commonly used neural network architectures. Its prediction rule is provided implicitly based on the solution of an equilibrium equation. Although a line of recent empirical studies has demonstrated its superior performances, the theoretical understanding of implicit neural networks is limited. In general, the equilibrium equation may not be well-posed during the training. As a result, there is no guarantee that a vanilla (stochastic) gradient descent (SGD) training nonlinear implicit neural networks can converge. This paper fills the gap by analyzing the gradient flow of Rectified Linear Unit (ReLU) activated implicit neural networks. For an $m$-width implicit neural network with ReLU activation and $n$ training samples, we show that a randomly initialized gradient descent converges to a global minimum at a linear rate for the square loss function if the implicit neural network is \textit{over-parameterized}. It is worth noting that, unlike existing works on the convergence of (S)GD on finite-layer over-parameterized neural networks, our convergence results hold for implicit neural networks, where the number of layers is \textit{infinite}.
We propose a new simulation-based estimation method, adversarial estimation, for structural models. The estimator is formulated as the solution to a minimax problem between a generator (which generates synthetic observations using the structural model) and a discriminator (which classifies if an observation is synthetic). The discriminator maximizes the accuracy of its classification while the generator minimizes it. We show that, with a sufficiently rich discriminator, the adversarial estimator attains parametric efficiency under correct specification and the parametric rate under misspecification. We advocate the use of a neural network as a discriminator that can exploit adaptivity properties and attain fast rates of convergence. We apply our method to the elderly's saving decision model and show that our estimator uncovers the bequest motive as an important source of saving across the wealth distribution, not only for the rich.
In this paper, we revisit Stochastic Continuous Submodular Maximization in both offline and online settings, which can benefit wide applications in machine learning and operations research areas. We present a boosting framework covering gradient ascent and online gradient ascent. The fundamental ingredient of our methods is a novel non-oblivious function $F$ derived from a factor-revealing optimization problem, whose any stationary point provides a $(1-e^{-\gamma})$-approximation to the global maximum of the $\gamma$-weakly DR-submodular objective function $f\in C^{1,1}_L(\mathcal{X})$. Under the offline scenario, we propose a boosting gradient ascent method achieving $(1-e^{-\gamma}-\epsilon^{2})$-approximation after $O(1/\epsilon^2)$ iterations, which improves the $(\frac{\gamma^2}{1+\gamma^2})$ approximation ratio of the classical gradient ascent algorithm. In the online setting, for the first time we consider the adversarial delays for stochastic gradient feedback, under which we propose a boosting online gradient algorithm with the same non-oblivious function $F$. Meanwhile, we verify that this boosting online algorithm achieves a regret of $O(\sqrt{D})$ against a $(1-e^{-\gamma})$-approximation to the best feasible solution in hindsight, where $D$ is the sum of delays of gradient feedback. To the best of our knowledge, this is the first result to obtain $O(\sqrt{T})$ regret against a $(1-e^{-\gamma})$-approximation with $O(1)$ gradient inquiry at each time step, when no delay exists, i.e., $D=T$. Finally, numerical experiments demonstrate the effectiveness of our boosting methods.
We present two strategies for designing passivity preserving higher order discretization methods for Maxwell's equations in nonlinear Kerr-type media. Both approaches are based on variational approximation schemes in space and time. This allows to rigorously prove energy conservation or dissipation, and thus passivity, on the fully discrete level. For linear media, the proposed methods coincide with certain combinations of mixed finite element and implicit Runge-Kutta schemes. The order optimal convergence rates, which can thus be expected for linear problems, are also observed for nonlinear problems in the numerical tests.
How to obtain good value estimation is one of the key problems in Reinforcement Learning (RL). Current value estimation methods, such as DDPG and TD3, suffer from unnecessary over- or underestimation bias. In this paper, we explore the potential of double actors, which has been neglected for a long time, for better value function estimation in continuous setting. First, we uncover and demonstrate the bias alleviation property of double actors by building double actors upon single critic and double critics to handle overestimation bias in DDPG and underestimation bias in TD3 respectively. Next, we interestingly find that double actors help improve the exploration ability of the agent. Finally, to mitigate the uncertainty of value estimate from double critics, we further propose to regularize the critic networks under double actors architecture, which gives rise to Double Actors Regularized Critics (DARC) algorithm. Extensive experimental results on challenging continuous control tasks show that DARC significantly outperforms state-of-the-art methods with higher sample efficiency.
Recent work has proposed stochastic Plackett-Luce (PL) ranking models as a robust choice for optimizing relevance and fairness metrics. Unlike their deterministic counterparts that require heuristic optimization algorithms, PL models are fully differentiable. Theoretically, they can be used to optimize ranking metrics via stochastic gradient descent. However, in practice, the computation of the gradient is infeasible because it requires one to iterate over all possible permutations of items. Consequently, actual applications rely on approximating the gradient via sampling techniques. In this paper, we introduce a novel algorithm: PL-Rank, that estimates the gradient of a PL ranking model w.r.t. both relevance and fairness metrics. Unlike existing approaches that are based on policy gradients, PL-Rank makes use of the specific structure of PL models and ranking metrics. Our experimental analysis shows that PL-Rank has a greater sample-efficiency and is computationally less costly than existing policy gradients, resulting in faster convergence at higher performance. PL-Rank further enables the industry to apply PL models for more relevant and fairer real-world ranking systems.
Modern online advertising systems inevitably rely on personalization methods, such as click-through rate (CTR) prediction. Recent progress in CTR prediction enjoys the rich representation capabilities of deep learning and achieves great success in large-scale industrial applications. However, these methods can suffer from lack of exploration. Another line of prior work addresses the exploration-exploitation trade-off problem with contextual bandit methods, which are less studied in the industry recently due to the difficulty in extending their flexibility with deep models. In this paper, we propose a novel Deep Uncertainty-Aware Learning (DUAL) method to learn deep CTR models based on Gaussian processes, which can provide efficient uncertainty estimations along with the CTR predictions while maintaining the flexibility of deep neural networks. By linking the ability to estimate predictive uncertainties of DUAL to well-known bandit algorithms, we further present DUAL-based Ad-ranking strategies to boost up long-term utilities such as the social welfare in advertising systems. Experimental results on several public datasets demonstrate the effectiveness of our methods. Remarkably, an online A/B test deployed in the Alibaba display advertising platform shows an $8.2\%$ social welfare improvement and an $8.0\%$ revenue lift.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.
We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.