亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

6G promises a paradigm shift in which positioning and sensing are inherently integrated, enhancing not only the communication performance but also enabling location- and context-aware services. Historically, positioning and sensing have been viewed through the lens of cost and performance trade-offs, implying an escalated demand for resources, such as radio, physical, and computational resources, for improved performance. However, 6G goes beyond this traditional perspective to encompass a set of broader values, namely sustainability, inclusiveness, and trustworthiness. From a joint industrial/academic perspective, this paper aims to shed light on these important value indicators and their relationship with the conventional key performance indicators in the context of positioning and sensing.

相關內容

Ransomware has been predominantly a threat to Windows systems. But, Linux systems became interesting for cybercriminals and this trend is expected to continue. This endangers IoT ecosystems, whereas many IoT systems are based on Linux (e.g. cloud infrastructure and gateways). This paper researches how currently employed forensic techniques can be applied to Linux ransomware and evaluates the maturity as well as the impact on the system. While Windows-based ransomware predominantly uses RSA and AES for key management, a variety of approaches was identified for Linux. Cybercriminals appear to be deliberately moving away from RSA and AES to make Live forensic investigations more difficult. Linux ransomware is developed for a predefined goal and does not exploit the full potential of damage. It appears in an early stage and is expected to reach a similar potential to Windows-based malware. The results generated provided an excellent basic understanding to discuss and assess implications on the IoT industry at an early stage of development.

In collaborative goal-oriented settings, the participants are not only interested in achieving a successful outcome, but do also implicitly negotiate the effort they put into the interaction (by adapting to each other). In this work, we propose a challenging interactive reference game that requires two players to coordinate on vision and language observations. The learning signal in this game is a score (given after playing) that takes into account the achieved goal and the players' assumed efforts during the interaction. We show that a standard Proximal Policy Optimization (PPO) setup achieves a high success rate when bootstrapped with heuristic partner behaviors that implement insights from the analysis of human-human interactions. And we find that a pairing of neural partners indeed reduces the measured joint effort when playing together repeatedly. However, we observe that in comparison to a reasonable heuristic pairing there is still room for improvement -- which invites further research in the direction of cost-sharing in collaborative interactions.

Multilevel modeling is increasingly relevant in the context of modelling and simulation since it leads to several potential benefits, such as software reuse and integration, the split of semantically separated levels into sub-models, the possibility to employ different levels of detail, and the potential for parallel execution. The coupling that inevitably exists between the sub-models, however, implies the need for maintaining consistency between the various components, more so when different simulation paradigms are employed (e.g., sequential vs parallel, discrete vs continuous). In this paper we argue that multilevel modelling is well suited for the simulation of human mobility, since it naturally leads to the decomposition of the model into two layers, the "micro" and "macro" layer, where individual entities (micro) and long-range interactions (macro) are described. In this paper we investigate the challenges of multilevel modeling, and describe some preliminary results using prototype implementations of multilayer simulators in the context of epidemic diffusion and vehicle pollution.

Referents are often used to enhance scale perception in immersive visualizations. Common referent designs include the considerations of referent layout (side-by-side vs. in-situ) and referent size (small vs. medium vs. large). This paper introduces a controlled user study to assess how different referent designs affect the efficiency and accuracy of scale perception across different data scales, on the performance of the size-matching task in the virtual environment. Our results reveal that in-situ layouts significantly enhance accuracy and confidence across various data scales, particularly with large referents. Linear regression analyses further confirm that in-situ layouts exhibit greater resilience to changes in data scale. For tasks requiring efficiency, medium-sized referents emerge as the preferred choice. Based on these findings, we offer design guidelines for selecting referent layouts and sizes in immersive visualizations.

A crucial aspect of a rumor detection model is its ability to generalize, particularly its ability to detect emerging, previously unknown rumors. Past research has indicated that content-based (i.e., using solely source posts as input) rumor detection models tend to perform less effectively on unseen rumors. At the same time, the potential of context-based models remains largely untapped. The main contribution of this paper is in the in-depth evaluation of the performance gap between content and context-based models specifically on detecting new, unseen rumors. Our empirical findings demonstrate that context-based models are still overly dependent on the information derived from the rumors' source post and tend to overlook the significant role that contextual information can play. We also study the effect of data split strategies on classifier performance. Based on our experimental results, the paper also offers practical suggestions on how to minimize the effects of temporal concept drift in static datasets during the training of rumor detection methods.

Lottery ticket hypothesis for deep neural networks emphasizes the importance of initialization used to re-train the sparser networks obtained using the iterative magnitude pruning process. An explanation for why the specific initialization proposed by the lottery ticket hypothesis tends to work better in terms of generalization (and training) performance has been lacking. Moreover, the underlying principles in iterative magnitude pruning, like the pruning of smaller magnitude weights and the role of the iterative process, lack full understanding and explanation. In this work, we attempt to provide insights into these phenomena by empirically studying the volume/geometry and loss landscape characteristics of the solutions obtained at various stages of the iterative magnitude pruning process.

With the growth of data sizes, visualizing them becomes more complex. Desktop displays are insufficient for presenting and collaborating on complex data visualizations. Large displays could provide the necessary space to demo or present complex data visualizations. However, designing and developing visualizations for such displays pose distinct challenges. Identifying these challenges is essential for researchers, designers, and developers in the field of data visualization. In this study, we aim to gain insights into the challenges encountered by designers and developers when creating data visualizations for large displays. We conducted a series of semi-structured interviews with experts who had experience in large displays and, through affinity diagramming, categorized the challenges.

This work discusses the benefits of having multiple simulated environments with different degrees of realism for the development of algorithms in scenarios populated by autonomous nodes capable of communication and mobility. This approach aids the development experience and generates robust algorithms. It also proposes GrADyS-SIM NextGen as a solution that enables development on a single programming language and toolset over multiple environments with varying levels of realism. Finally, we illustrate the usefulness of this approach with a toy problem that makes use of the simulation framework, taking advantage of the proposed environments to iteratively develop a robust solution.

We consider a nonparametric regression model with continuous endogenous independent variables when only discrete instruments are available that are independent of the error term. While this framework is very relevant for applied research, its implementation is cumbersome, as the regression function becomes the solution to a nonlinear integral equation. We propose a simple iterative procedure to estimate such models and showcase some of its asymptotic properties. In a simulation experiment, we discuss the details of its implementation in the case when the instrumental variable is binary. We conclude with an empirical application in which we examine the effect of pollution on house prices in a short panel of U.S. counties.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司