Lane detection is a long-standing task and a basic module in autonomous driving. The task is to detect the lane of the current driving road, and provide relevant information such as the ID, direction, curvature, width, length, with visualization. Our work is based on CNN backbone DLA-34, along with Affinity Fields, aims to achieve robust detection of various lanes without assuming the number of lanes. Besides, we investigate novel decoding methods to achieve more efficient lane detection algorithm.
We propose a simple approach for weighting self-connecting edges in a Graph Convolutional Network (GCN) and show its impact on depression detection from transcribed clinical interviews. To this end, we use a GCN for modeling non-consecutive and long-distance semantics to classify the transcriptions into depressed or control subjects. The proposed method aims to mitigate the limiting assumptions of locality and the equal importance of self-connections vs. edges to neighboring nodes in GCNs, while preserving attractive features such as low computational cost, data agnostic, and interpretability capabilities. We perform an exhaustive evaluation in two benchmark datasets. Results show that our approach consistently outperforms the vanilla GCN model as well as previously reported results, achieving an F1=0.84% on both datasets. Finally, a qualitative analysis illustrates the interpretability capabilities of the proposed approach and its alignment with previous findings in psychology.
This paper presents a novel object detector called DEYOv2, an improved version of the first-generation DEYO (DETR with YOLO) model. DEYOv2, similar to its predecessor, DEYOv2 employs a progressive reasoning approach to accelerate model training and enhance performance. The study delves into the limitations of one-to-one matching in optimization and proposes solutions to effectively address the issue, such as Rank Feature and Greedy Matching. This approach enables the third stage of DEYOv2 to maximize information acquisition from the first and second stages without needing NMS, achieving end-to-end optimization. By combining dense queries, sparse queries, one-to-many matching, and one-to-one matching, DEYOv2 leverages the advantages of each method. It outperforms all existing query-based end-to-end detectors under the same settings. When using ResNet-50 as the backbone and multi-scale features on the COCO dataset, DEYOv2 achieves 51.1 AP and 51.8 AP in 12 and 24 epochs, respectively. Compared to the end-to-end model DINO, DEYOv2 provides significant performance gains of 2.1 AP and 1.4 AP in the two epoch settings. To the best of our knowledge, DEYOv2 is the first fully end-to-end object detector that combines the respective strengths of classical detectors and query-based detectors.
The expanding market for e-comics has spurred interest in the development of automated methods to analyze comics. For further understanding of comics, an automated approach is needed to link text in comics to characters speaking the words. Comics speaker detection research has practical applications, such as automatic character assignment for audiobooks, automatic translation according to characters' personalities, and inference of character relationships and stories. To deal with the problem of insufficient speaker-to-text annotations, we created a new annotation dataset Manga109Dialog based on Manga109. Manga109Dialog is the world's largest comics speaker annotation dataset, containing 132,692 speaker-to-text pairs. We further divided our dataset into different levels by prediction difficulties to evaluate speaker detection methods more appropriately. Unlike existing methods mainly based on distances, we propose a deep learning-based method using scene graph generation models. Due to the unique features of comics, we enhance the performance of our proposed model by considering the frame reading order. We conducted experiments using Manga109Dialog and other datasets. Experimental results demonstrate that our scene-graph-based approach outperforms existing methods, achieving a prediction accuracy of over 75%.
In this paper, we study the few-shot multi-label classification for user intent detection. For multi-label intent detection, state-of-the-art work estimates label-instance relevance scores and uses a threshold to select multiple associated intent labels. To determine appropriate thresholds with only a few examples, we first learn universal thresholding experience on data-rich domains, and then adapt the thresholds to certain few-shot domains with a calibration based on nonparametric learning. For better calculation of label-instance relevance score, we introduce label name embedding as anchor points in representation space, which refines representations of different classes to be well-separated from each other. Experiments on two datasets show that the proposed model significantly outperforms strong baselines in both one-shot and five-shot settings.
We study few-shot acoustic event detection (AED) in this paper. Few-shot learning enables detection of new events with very limited labeled data. Compared to other research areas like computer vision, few-shot learning for audio recognition has been under-studied. We formulate few-shot AED problem and explore different ways of utilizing traditional supervised methods for this setting as well as a variety of meta-learning approaches, which are conventionally used to solve few-shot classification problem. Compared to supervised baselines, meta-learning models achieve superior performance, thus showing its effectiveness on generalization to new audio events. Our analysis including impact of initialization and domain discrepancy further validate the advantage of meta-learning approaches in few-shot AED.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.
The task of detecting 3D objects in point cloud has a pivotal role in many real-world applications. However, 3D object detection performance is behind that of 2D object detection due to the lack of powerful 3D feature extraction methods. In order to address this issue, we propose to build a 3D backbone network to learn rich 3D feature maps by using sparse 3D CNN operations for 3D object detection in point cloud. The 3D backbone network can inherently learn 3D features from almost raw data without compressing point cloud into multiple 2D images and generate rich feature maps for object detection. The sparse 3D CNN takes full advantages of the sparsity in the 3D point cloud to accelerate computation and save memory, which makes the 3D backbone network achievable. Empirical experiments are conducted on the KITTI benchmark and results show that the proposed method can achieve state-of-the-art performance for 3D object detection.
The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources
Salient object detection is a fundamental problem and has been received a great deal of attentions in computer vision. Recently deep learning model became a powerful tool for image feature extraction. In this paper, we propose a multi-scale deep neural network (MSDNN) for salient object detection. The proposed model first extracts global high-level features and context information over the whole source image with recurrent convolutional neural network (RCNN). Then several stacked deconvolutional layers are adopted to get the multi-scale feature representation and obtain a series of saliency maps. Finally, we investigate a fusion convolution module (FCM) to build a final pixel level saliency map. The proposed model is extensively evaluated on four salient object detection benchmark datasets. Results show that our deep model significantly outperforms other 12 state-of-the-art approaches.