Voicebots have provided a new avenue for supporting the development of language skills, particularly within the context of second language learning. Voicebots, though, have largely been geared towards native adult speakers. We sought to assess the performance of two state-of-the-art ASR systems, Wav2Vec2.0 and Whisper AI, with a view to developing a voicebot that can support children acquiring a foreign language. We evaluated their performance on read and extemporaneous speech of native and non-native Dutch children. We also investigated the utility of using ASR technology to provide insight into the children's pronunciation and fluency. The results show that recent, pre-trained ASR transformer-based models achieve acceptable performance from which detailed feedback on phoneme pronunciation quality can be extracted, despite the challenging nature of child and non-native speech.
Software issues contain units of work to fix, improve, or create new threads during the development and facilitate communication among the team members. Assigning an issue to the most relevant team member and determining a category of an issue is a tedious and challenging task. Wrong classifications cause delays and rework in the project and trouble among the team members. This paper proposes a set of carefully curated linguistic features for shallow machine learning methods and compares the performance of shallow and ensemble methods with deep language models. Unlike the state-of-the-art, we assign issues to four roles (designer, developer, tester, and leader) rather than to specific individuals or teams to contribute to the generality of our solution. We also consider the level of experience of the developers to reflect the industrial practices in our solution formulation. We collect and annotate five industrial data sets from one of the top three global television producers to evaluate our proposal and compare it with deep language models. Our data sets contain 5324 issues in total. We show that an ensemble classifier of shallow techniques achieves 0.92 for issue assignment in accuracy which is statistically comparable to the state-of-the-art deep language models. The contributions include the public sharing of five annotated industrial issue data sets, the development of a clear and comprehensive feature set, the introduction of a novel label set, and the validation of the efficacy of an ensemble classifier of shallow machine learning techniques.
Transformers have emerged as the cornerstone of state-of-the-art natural language processing models, showcasing exceptional performance across a wide range of AI applications. However, the memory demands posed by the self-attention mechanism and the large feedforward network in Transformers limit their ability to handle long sequences, thereby creating challenges for tasks involving multiple long sequences or long-term dependencies. We present a distinct approach, Blockwise Parallel Transformer (BPT), that leverages blockwise computation of self-attention and feedforward network fusion to minimize memory costs. By processing longer input sequences while maintaining memory efficiency, BPT enables training sequences up to 32 times longer than vanilla Transformers and 2 to 4 times longer than previous memory-efficient methods. Extensive experiments on language modeling and reinforcement learning tasks demonstrate the effectiveness of BPT in reducing memory requirements and improving performance.
Ports are striving for innovative technological solutions to cope with the ever-increasing growth of transport, while at the same time improving their environmental footprint. An emerging technology that has the potential to substantially increase the efficiency of the multifaceted and interconnected port processes is the digital twin. Although digital twins have been successfully integrated in many industries, there is still a lack of cross-domain understanding of what constitutes a digital twin. Furthermore, the implementation of the digital twin in complex systems such as the port is still in its infancy. This paper attempts to fill this research gap by conducting an extensive cross-domain literature review of what constitutes a digital twin, keeping in mind the extent to which the respective findings can be applied to the port. It turns out that the digital twin of the port is most comparable to complex systems such as smart cities and supply chains, both in terms of its functional relevance as well as in terms of its requirements and characteristics. The conducted literature review, considering the different port processes and port characteristics, results in the identification of three core requirements of a digital port twin, which are described in detail. These include situational awareness, comprehensive data analytics capabilities for intelligent decision making, and the provision of an interface to promote multi-stakeholder governance and collaboration. Finally, specific operational scenarios are proposed on how the port's digital twin can contribute to energy savings by improving the use of port resources, facilities and operations.
Blockchains require deterministic execution in order to reach consensus. This is often guaranteed in languages designed to write smart contracts, such as Solidity. Application-specific blockchains or ``appchains'' allow the blockchain application logic to be written using general-purpose programming languages, giving developers more flexibility but also additional responsibilities. In particular, developers must ensure that their blockchain application logic does not contain any sources of non-determinism. Any source of non-determinism may be a potential source of vulnerabilities. This paper focuses on the use of Static Application Security Testing (SAST) tools to detect such sources of non-determinism at development time. We focus on Cosmos, a prominent open-source project that lets developers build interconnected networks of application-specific blockchains. Cosmos provides a Software Development Kit (SDK) that allows these chains to be implemented in the Go programming language. We create a corpus of 11 representative Cosmos-based appchains to analyze for sources of non-determinism in Go. As part of our study, we identified cosmos-sdk-codeql, a set of CodeQL code analysis rules for Cosmos applications. We find that these rules generate many false positives and propose a refactored set of rules that more precisely detects sources of non-determinism only in code that runs as part of the blockchain logic. We demonstrate a significant increase in the precision of the rules, making the SAST tool more effective and hence potentially contributing to enhanced security for Cosmos-based blockchains.
Overtaking on two-lane roads is a great challenge for autonomous vehicles, as oncoming traffic appearing on the opposite lane may require the vehicle to change its decision and abort the overtaking. Deep reinforcement learning (DRL) has shown promise for difficult decision problems such as this, but it requires massive number of data, especially if the action space is continuous. This paper proposes to incorporate guidance from an expert system into DRL to increase its sample efficiency in the autonomous overtaking setting. The guidance system developed in this study is composed of constrained iterative LQR and PID controllers. The novelty lies in the incorporation of a fading guidance function, which gradually decreases the effect of the expert system, allowing the agent to initially learn an appropriate action swiftly and then improve beyond the performance of the expert system. This approach thus combines the strengths of traditional control engineering with the flexibility of learning systems, expanding the capabilities of the autonomous system. The proposed methodology for autonomous vehicle overtaking does not depend on a particular DRL algorithm and three state-of-the-art algorithms are used as baselines for evaluation. Simulation results show that incorporating expert system guidance improves state-of-the-art DRL algorithms greatly in both sample efficiency and driving safety.
Research in natural language processing has demonstrated that the quality of generations from trained autoregressive language models is significantly influenced by the used sampling strategy. In this study, we investigate the impact of different sampling techniques on musical qualities such as diversity and structure. To accomplish this, we train a high-capacity transformer model on a vast collection of highly-structured Irish folk melodies and analyze the musical qualities of the samples generated using distribution truncation sampling techniques. Specifically, we use nucleus sampling, the recently proposed "typical sampling", and conventional ancestral sampling. We evaluate the effect of these sampling strategies in two scenarios: optimal circumstances with a well-calibrated model and suboptimal circumstances where we systematically degrade the model's performance. We assess the generated samples using objective and subjective evaluations. We discover that probability truncation techniques may restrict diversity and structural patterns in optimal circumstances, but may also produce more musical samples in suboptimal circumstances.
Much of the knowledge encoded in transformer language models (LMs) may be expressed in terms of relations: relations between words and their synonyms, entities and their attributes, etc. We show that, for a subset of relations, this computation is well-approximated by a single linear transformation on the subject representation. Linear relation representations may be obtained by constructing a first-order approximation to the LM from a single prompt, and they exist for a variety of factual, commonsense, and linguistic relations. However, we also identify many cases in which LM predictions capture relational knowledge accurately, but this knowledge is not linearly encoded in their representations. Our results thus reveal a simple, interpretable, but heterogeneously deployed knowledge representation strategy in transformer LMs.
Unsupervised representation learning has recently helped automatic speech recognition (ASR) to tackle tasks with limited labeled data. Following this, hardware limitations and applications give rise to the question how to take advantage of large pre-trained models efficiently and reduce their complexity. In this work, we study a challenging low resource conversational telephony speech corpus from the medical domain in Vietnamese and German. We show the benefits of using unsupervised techniques beyond simple fine-tuning of large pre-trained models, discuss how to adapt them to a practical telephony task including bandwidth transfer and investigate different data conditions for pre-training and fine-tuning. We outperform the project baselines by 22% relative using pretraining techniques. Further gains of 29% can be achieved by refinements of architecture and training and 6% by adding 0.8 h of in-domain adaptation data.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.