This study proposes a unified optimization-based planning framework that addresses the precise and efficient navigation of a controlled object within a constrained region, while contending with obstacles. We focus on handling two collision avoidance problems, i.e., the object not colliding with obstacles and not colliding with boundaries of the constrained region. The object or obstacle is denoted as a union of convex polytopes and ellipsoids, and the constrained region is denoted as an intersection of such convex sets. Using these representations, collision avoidance can be approached by formulating explicit constraints that separate two convex sets, or ensure that a convex set is contained in another convex set, referred to as separating constraints and containing constraints, respectively. We propose to use the hyperplane separation theorem to formulate differentiable separating constraints, and utilize the S-procedure and geometrical methods to formulate smooth containing constraints. We state that compared to the state of the art, the proposed formulations allow a considerable reduction in nonlinear program size and geometry-based initialization in auxiliary variables used to formulate collision avoidance constraints. Finally, the efficacy of the proposed unified planning framework is evaluated in two contexts, autonomous parking in tractor-trailer vehicles and overtaking on curved lanes. The results in both cases exhibit an improved computational performance compared to existing methods.
We introduce a fast and explainable clustering method called CLASSIX. It consists of two phases, namely a greedy aggregation phase of the sorted data into groups of nearby data points, followed by the merging of groups into clusters. The algorithm is controlled by two scalar parameters, namely a distance parameter for the aggregation and another parameter controlling the minimal cluster size. Extensive experiments are conducted to give a comprehensive evaluation of the clustering performance on synthetic and real-world datasets, with various cluster shapes and low to high feature dimensionality. Our experiments demonstrate that CLASSIX competes with state-of-the-art clustering algorithms. The algorithm has linear space complexity and achieves near linear time complexity on a wide range of problems. Its inherent simplicity allows for the generation of intuitive explanations of the computed clusters.
Instrumental variables are widely used in econometrics and epidemiology for identifying and estimating causal effects when an exposure of interest is confounded by unmeasured factors. Despite this popularity, the assumptions invoked to justify the use of instruments differ substantially across the literature. Similarly, statistical approaches for estimating the resulting causal quantities vary considerably, and often rely on strong parametric assumptions. In this work, we compile and organize structural conditions that nonparametrically identify conditional average treatment effects, average treatment effects among the treated, and local average treatment effects, with a focus on identification formulae invoking the conditional Wald estimand. Moreover, we build upon existing work and propose nonparametric efficient estimators of functionals corresponding to marginal and conditional causal contrasts resulting from the various identification paradigms. We illustrate the proposed methods on an observational study examining the effects of operative care on adverse events for cholecystitis patients, and a randomized trial assessing the effects of market participation on political views.
Motivated by the important statistical role of sparsity, the paper uncovers four reparametrizations for covariance matrices in which sparsity is associated with conditional independence graphs in a notional Gaussian model. The intimate relationship between the Iwasawa decomposition of the general linear group and the open cone of positive definite matrices allows a unifying perspective. Specifically, the positive definite cone can be reconstructed without loss or redundancy from the exponential map applied to four Lie subalgebras determined by the Iwasawa decomposition of the general linear group. This accords geometric interpretations to the reparametrizations and the corresponding notion of sparsity. Conditions that ensure legitimacy of the reparametrizations for statistical models are identified. While the focus of this work is on understanding population-level structure, there are strong methodological implications. In particular, since the population-level sparsity manifests in a vector space, imposition of sparsity on relevant sample quantities produces a covariance estimate that respects the positive definite cone constraint.
Acquiring information on spatial phenomena can be costly and time-consuming. In this context, to obtain reliable global knowledge, the choice of measurement location is a crucial issue. Space-lling designs are often used to control variability uniformly across the whole space. However, in a monitoring context, it is more relevant to focus on crucial regions, especially when dealing with sensitive areas such as the environment, climate or public health. It is therefore important to choose a relevant optimality criterion to build models adapted to the purpose of the experiment. In this article, we propose two new optimality criteria: the rst aims to focus on areas where the response exceeds a given threshold, while the second is suitable for estimating sets of levels. We introduce several algorithms for constructing optimal designs. We also focus on cost-eective algorithms that produce non-optimal but ecient designs. For both sequential and non-sequential contexts, we compare our designs with existing ones through extensive simulation studies.
We present an information-theoretic lower bound for the problem of parameter estimation with time-uniform coverage guarantees. Via a new a reduction to sequential testing, we obtain stronger lower bounds that capture the hardness of the time-uniform setting. In the case of location model estimation, logistic regression, and exponential family models, our $\Omega(\sqrt{n^{-1}\log \log n})$ lower bound is sharp to within constant factors in typical settings.
Signal processing in the time-frequency plane has a long history and remains a field of methodological innovation. For instance, detection and denoising based on the zeros of the spectrogram have been proposed since 2015, contrasting with a long history of focusing on larger values of the spectrogram. Yet, unlike neighboring fields like optimization and machine learning, time-frequency signal processing lacks widely-adopted benchmarking tools. In this work, we contribute an open-source, Python-based toolbox termed MCSM-Benchs for benchmarking multi-component signal analysis methods, and we demonstrate our toolbox on three time-frequency benchmarks. First, we compare different methods for signal detection based on the zeros of the spectrogram, including unexplored variations of previously proposed detection tests. Second, we compare zero-based denoising methods to both classical and novel methods based on large values and ridges of the spectrogram. Finally, we compare the denoising performance of these methods against typical spectrogram thresholding strategies, in terms of post-processing artifacts commonly referred to as musical noise. At a low level, the obtained results provide new insight on the assessed approaches, and in particular research directions to further develop zero-based methods. At a higher level, our benchmarks exemplify the benefits of using a public, collaborative, common framework for benchmarking.
Combinatorial optimization - a field of research addressing problems that feature strongly in a wealth of scientific and industrial contexts - has been identified as one of the core potential fields of applicability of quantum computers. It is still unclear, however, to what extent quantum algorithms can actually outperform classical algorithms for this type of problems. In this work, by resorting to computational learning theory and cryptographic notions, we prove that quantum computers feature an in-principle super-polynomial advantage over classical computers in approximating solutions to combinatorial optimization problems. Specifically, building on seminal work by Kearns and Valiant and introducing a new reduction, we identify special types of problems that are hard for classical computers to approximate up to polynomial factors. At the same time, we give a quantum algorithm that can efficiently approximate the optimal solution within a polynomial factor. The core of the quantum advantage discovered in this work is ultimately borrowed from Shor's quantum algorithm for factoring. Concretely, we prove a super-polynomial advantage for approximating special instances of the so-called integer programming problem. In doing so, we provide an explicit end-to-end construction for advantage bearing instances. This result shows that quantum devices have, in principle, the power to approximate combinatorial optimization solutions beyond the reach of classical efficient algorithms. Our results also give clear guidance on how to construct such advantage-bearing problem instances.
We investigate pointwise estimation of the function-valued velocity field of a second-order linear SPDE. Based on multiple spatially localised measurements, we construct a weighted augmented MLE and study its convergence properties as the spatial resolution of the observations tends to zero and the number of measurements increases. By imposing H\"older smoothness conditions, we recover the pointwise convergence rate known to be minimax-optimal in the linear regression framework. The optimality of the rate in the current setting is verified by adapting the lower bound ansatz based on the RKHS of local measurements to the nonparametric situation.
Since its introduction in 2011, the partial information decomposition (PID) has triggered an explosion of interest in the field of multivariate information theory and the study of emergent, higher-order ("synergistic") interactions in complex systems. Despite its power, however, the PID has a number of limitations that restrict its general applicability: it scales poorly with system size and the standard approach to decomposition hinges on a definition of "redundancy", leaving synergy only vaguely defined as "that information not redundant." Other heuristic measures, such as the O-information, have been introduced, although these measures typically only provided a summary statistic of redundancy/synergy dominance, rather than direct insight into the synergy itself. To address this issue, we present an alternative decomposition that is synergy-first, scales much more gracefully than the PID, and has a straightforward interpretation. Our approach defines synergy as that information in a set that would be lost following the minimally invasive perturbation on any single element. By generalizing this idea to sets of elements, we construct a totally ordered "backbone" of partial synergy atoms that sweeps systems scales. Our approach starts with entropy, but can be generalized to the Kullback-Leibler divergence, and by extension, to the total correlation and the single-target mutual information. Finally, we show that this approach can be used to decompose higher-order interactions beyond just information theory: we demonstrate this by showing how synergistic combinations of pairwise edges in a complex network supports signal communicability and global integration. We conclude by discussing how this perspective on synergistic structure (information-based or otherwise) can deepen our understanding of part-whole relationships in complex systems.
We adopt the integral definition of the fractional Laplace operator and study an optimal control problem on Lipschitz domains that involves a fractional elliptic partial differential equation (PDE) as state equation and a control variable that enters the state equation as a coefficient; pointwise constraints on the control variable are considered as well. We establish the existence of optimal solutions and analyze first and, necessary and sufficient, second order optimality conditions. Regularity estimates for optimal variables are also analyzed. We develop two finite element discretization strategies: a semidiscrete scheme in which the control variable is not discretized, and a fully discrete scheme in which the control variable is discretized with piecewise constant functions. For both schemes, we analyze the convergence properties of discretizations and derive error estimates.