Real world re-identfication (ReID) algorithms aim to map new observations of an object to previously recorded instances. These systems are often constrained by quantity and size of the stored embeddings. To combat this scaling problem, we attempt to shrink the size of these vectors by using a variety of compression techniques. In this paper, we benchmark quantization-aware-training along with three different dimension reduction methods: iterative structured pruning, slicing the embeddings at initialize, and using low rank embeddings. We find that ReID embeddings can be compressed by up to 96x with minimal drop in performance. This implies that modern re-identification paradigms do not fully leverage the high dimensional latent space, opening up further research to increase the capabilities of these systems.
Large language models (LLMs) typically utilize the top-k contexts from a retriever in retrieval-augmented generation (RAG). In this work, we propose a novel instruction fine-tuning framework RankRAG, which instruction-tunes a single LLM for the dual purpose of context ranking and answer generation in RAG. In particular, the instruction-tuned LLMs work surprisingly well by adding a small fraction of ranking data into the training blend, and outperform existing expert ranking models, including the same LLM exclusively fine-tuned on a large amount of ranking data. For generation, we compare our model with many strong baselines, including GPT-4-0613, GPT-4-turbo-2024-0409, and ChatQA-1.5, an open-sourced model with the state-of-the-art performance on RAG benchmarks. Specifically, our Llama3-RankRAG significantly outperforms Llama3-ChatQA-1.5 and GPT-4 models on nine knowledge-intensive benchmarks. In addition, it also performs comparably to GPT-4 on five RAG benchmarks in the biomedical domain without instruction fine-tuning on biomedical data, demonstrating its superb capability for generalization to new domains.
The design of SQL is based on a three-valued logic (3VL), rather than the familiar Boolean logic. 3VL adds a truth value unknown to true and false to handle nulls. Viewed as indispensable for SQL expressiveness, it is at the same time much criticized for unintuitive behavior of queries and being a source of programmer mistakes. We show that, contrary to the widely held view, SQL could have been designed based on the standard Boolean logic, without any loss of expressiveness and without giving up nulls. The approach itself follows SQL's evaluation, which only retains tuples for which conditions in WHERE evaluate to true. We show that conflating unknown with false leads to an equally expressive version of SQL that does not use the third truth value. Queries written under the two-valued semantics can be efficiently translated into the standard SQL and thus executed on any existing RDBMS. These results cover the core of the SQL 1999 Standard: SELECT-FROM-WHERE-GROUP BY-HAVING queries extended with subqueries and IN/EXISTS/ANY/ALL conditions, and recursive queries. We also investigate new optimization rules enabled by the two-valued SQL, and show that for many queries, including most of those found in benchmarks such as TPC-H and TPC-DS, there is no difference between three- and two-valued versions.
Relation classification, a crucial component of relation extraction, involves identifying connections between two entities. Previous studies have predominantly focused on integrating the attention mechanism into relation classification at a global scale, overlooking the importance of the local context. To address this gap, this paper introduces a novel global-local attention mechanism for relation classification, which enhances global attention with a localized focus. Additionally, we propose innovative hard and soft localization mechanisms to identify potential keywords for local attention. By incorporating both hard and soft localization strategies, our approach offers a more nuanced and comprehensive understanding of the contextual cues that contribute to effective relation classification. Our experimental results on the SemEval-2010 Task 8 dataset highlight the superior performance of our method compared to previous attention-based approaches in relation classification.
Score distillation sampling (SDS), the methodology in which the score from pretrained 2D diffusion models is distilled into 3D representation, has recently brought significant advancements in text-to-3D generation task. However, this approach is still confronted with critical geometric inconsistency problems such as the Janus problem. Starting from a hypothesis that such inconsistency problems may be induced by multiview inconsistencies between 2D scores predicted from various viewpoints, we introduce GSD, a simple and general plug-and-play framework for incorporating 3D consistency and therefore geometry awareness into the SDS process. Our methodology is composed of three components: 3D consistent noising, designed to produce 3D consistent noise maps that perfectly follow the standard Gaussian distribution, geometry-based gradient warping for identifying correspondences between predicted gradients of different viewpoints, and novel gradient consistency loss to optimize the scene geometry toward producing more consistent gradients. We demonstrate that our method significantly improves performance, successfully addressing the geometric inconsistency problems in text-to-3D generation task with minimal computation cost and being compatible with existing score distillation-based models. Our project page is available at //ku-cvlab.github.io/GSD/.
Goal representation affects the performance of Hierarchical Reinforcement Learning (HRL) algorithms by decomposing the complex learning problem into easier subtasks. Recent studies show that representations that preserve temporally abstract environment dynamics are successful in solving difficult problems and provide theoretical guarantees for optimality. These methods however cannot scale to tasks where environment dynamics increase in complexity i.e. the temporally abstract transition relations depend on larger number of variables. On the other hand, other efforts have tried to use spatial abstraction to mitigate the previous issues. Their limitations include scalability to high dimensional environments and dependency on prior knowledge. In this paper, we propose a novel three-layer HRL algorithm that introduces, at different levels of the hierarchy, both a spatial and a temporal goal abstraction. We provide a theoretical study of the regret bounds of the learned policies. We evaluate the approach on complex continuous control tasks, demonstrating the effectiveness of spatial and temporal abstractions learned by this approach. Find open-source code at //github.com/cosynus-lix/STAR.
We present SMPLOlympics, a collection of physically simulated environments that allow humanoids to compete in a variety of Olympic sports. Sports simulation offers a rich and standardized testing ground for evaluating and improving the capabilities of learning algorithms due to the diversity and physically demanding nature of athletic activities. As humans have been competing in these sports for many years, there is also a plethora of existing knowledge on the preferred strategy to achieve better performance. To leverage these existing human demonstrations from videos and motion capture, we design our humanoid to be compatible with the widely-used SMPL and SMPL-X human models from the vision and graphics community. We provide a suite of individual sports environments, including golf, javelin throw, high jump, long jump, and hurdling, as well as competitive sports, including both 1v1 and 2v2 games such as table tennis, tennis, fencing, boxing, soccer, and basketball. Our analysis shows that combining strong motion priors with simple rewards can result in human-like behavior in various sports. By providing a unified sports benchmark and baseline implementation of state and reward designs, we hope that SMPLOlympics can help the control and animation communities achieve human-like and performant behaviors.
Efficient derandomization has long been a goal in complexity theory, and a major recent result by Yanyi Liu and Rafael Pass identifies a new class of hardness assumption under which it is possible to perform time-bounded derandomization efficiently: that of ''leakage-resilient hardness.'' They identify a specific form of this assumption which is $\textit{equivalent}$ to $\mathsf{prP} = \mathsf{prBPP}$. In this paper, we pursue an equivalence to derandomization of $\mathsf{prBP{\cdot}L}$ (logspace promise problems with two-way randomness) through techniques analogous to Liu and Pass. We are able to obtain an equivalence between a similar ''leakage-resilient hardness'' assumption and a slightly stronger statement than derandomization of $\mathsf{prBP{\cdot}L}$, that of finding ''non-no'' instances of ''promise search problems.''
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.
Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.