In the present study, we investigate and compare reasoning in large language models (LLM) and humans using a selection of cognitive psychology tools traditionally dedicated to the study of (bounded) rationality. To do so, we presented to human participants and an array of pretrained LLMs new variants of classical cognitive experiments, and cross-compared their performances. Our results showed that most of the included models presented reasoning errors akin to those frequently ascribed to error-prone, heuristic-based human reasoning. Notwithstanding this superficial similarity, an in-depth comparison between humans and LLMs indicated important differences with human-like reasoning, with models limitations disappearing almost entirely in more recent LLMs releases. Moreover, we show that while it is possible to devise strategies to induce better performance, humans and machines are not equally-responsive to the same prompting schemes. We conclude by discussing the epistemological implications and challenges of comparing human and machine behavior for both artificial intelligence and cognitive psychology.
In this article, we study the parameterized complexity of the Set Cover problem restricted to semi-ladder-free hypergraphs, a class defined by Fabianski et al. [Proceedings of STACS 2019]. We observe that two algorithms introduced by Langerman and Morin [Discrete & Computational Geometry 2005] in the context of geometric covering problems can be adapted to this setting, yielding simple FPT and kernelization algorithms for Set Cover in semi-ladder-free hypergraphs. We complement our algorithmic results with a compression lower bound for the problem, which proves the tightness of our kernelization under standard complexity-theoretic assumptions.
We combine Kronecker products, and quantitative information flow, to give a novel formal analysis for the fine-grained verification of utility in complex privacy pipelines. The combination explains a surprising anomaly in the behaviour of utility of privacy-preserving pipelines -- that sometimes a reduction in privacy results also in a decrease in utility. We use the standard measure of utility for Bayesian analysis, introduced by Ghosh at al., to produce tractable and rigorous proofs of the fine-grained statistical behaviour leading to the anomaly. More generally, we offer the prospect of formal-analysis tools for utility that complement extant formal analyses of privacy. We demonstrate our results on a number of common privacy-preserving designs.
As large language models (LLMs) become more capable, there is growing excitement about the possibility of using LLMs as proxies for humans in real-world tasks where subjective labels are desired, such as in surveys and opinion polling. One widely-cited barrier to the adoption of LLMs is their sensitivity to prompt wording -- but interestingly, humans also display sensitivities to instruction changes in the form of response biases. As such, we argue that if LLMs are going to be used to approximate human opinions, it is necessary to investigate the extent to which LLMs also reflect human response biases, if at all. In this work, we use survey design as a case study, where human response biases caused by permutations in wordings of ``prompts'' have been extensively studied. Drawing from prior work in social psychology, we design a dataset and propose a framework to evaluate whether LLMs exhibit human-like response biases in survey questionnaires. Our comprehensive evaluation of nine models shows that popular open and commercial LLMs generally fail to reflect human-like behavior. These inconsistencies tend to be more prominent in models that have been instruction fine-tuned. Furthermore, even if a model shows a significant change in the same direction as humans, we find that perturbations that are not meant to elicit significant changes in humans may also result in a similar change, suggesting that such a result could be partially due to other spurious correlations. These results highlight the potential pitfalls of using LLMs to substitute humans in parts of the annotation pipeline, and further underscore the importance of finer-grained characterizations of model behavior. Our code, dataset, and collected samples are available at //github.com/lindiatjuatja/BiasMonkey
The Causal Roadmap outlines a systematic approach to our research endeavors: define quantity of interest, evaluate needed assumptions, conduct statistical estimation, and carefully interpret of results. At the estimation step, it is essential that the estimation algorithm be chosen thoughtfully for its theoretical properties and expected performance. Simulations can help researchers gain a better understanding of an estimator's statistical performance under conditions unique to the real-data application. This in turn can inform the rigorous pre-specification of a Statistical Analysis Plan (SAP), not only stating the estimand (e.g., G-computation formula), the estimator (e.g., targeted minimum loss-based estimation [TMLE]), and adjustment variables, but also the implementation of the estimator -- including nuisance parameter estimation and approach for variance estimation. Doing so helps ensure valid inference (e.g., 95% confidence intervals with appropriate coverage). Failing to pre-specify estimation can lead to data dredging and inflated Type-I error rates.
We import the algebro-geometric notion of a complete collineation into the study of maximum likelihood estimation in directed Gaussian graphical models. A complete collineation produces a perturbation of sample data, which we call a stabilisation of the sample. While a maximum likelihood estimate (MLE) may not exist or be unique given sample data, it is always unique given a stabilisation. We relate the MLE given a stabilisation to the MLE given original sample data, when one exists, providing necessary and sufficient conditions for the MLE given a stabilisation to be one given the original sample. For linear regression models, we show that the MLE given any stabilisation is the minimal norm choice among the MLEs given an original sample. We show that the MLE has a well-defined limit as the stabilisation of a sample tends to the original sample, and that the limit is an MLE given the original sample, when one exists. Finally, we study which MLEs given a sample can arise as such limits. We reduce this to a question regarding the non-emptiness of certain algebraic varieties.
Thanks to the singularity of the solution of linear subdiffusion problems, most time-stepping methods on uniform meshes can result in $O(\tau)$ accuracy where $\tau$ denotes the time step. The present work aims to discover the reason why some type of Crank-Nicolson schemes (the averaging Crank-Nicolson scheme) for the subdiffusion can only yield $O(\tau^\alpha)$$(\alpha<1)$ accuracy, which is much lower than the desired. The existing well developed error analysis for the subdiffusion, which has been successfully applied to many time-stepping methods such as the fractional BDF-$p (1\leq p\leq 6)$, all requires singular points be out of the path of contour integrals involved. The averaging Crank-Nicolson scheme in this work is quite natural but fails to meet this requirement. By resorting to the residue theorem, some novel sharp error analysis is developed in this study, upon which correction methods are further designed to obtain the optimal $O(\tau^2)$ accuracy. All results are verified by numerical tests.
Knowledge Distillation (KD) compresses computationally expensive pre-trained language models (PLMs) by transferring their knowledge to smaller models, allowing their use in resource-constrained or real-time settings. However, most smaller models fail to surpass the performance of the original larger model, resulting in sacrificing performance to improve inference speed. To address this issue, we propose Co-Training and Co-Distillation (CTCD), a novel framework that improves performance and inference speed together by co-training two models while mutually distilling knowledge. The CTCD framework successfully achieves this based on two significant findings: 1) Distilling knowledge from the smaller model to the larger model during co-training improves the performance of the larger model. 2) The enhanced performance of the larger model further boosts the performance of the smaller model. The CTCD framework shows promise as it can be combined with existing techniques like architecture design or data augmentation, replacing one-way KD methods, to achieve further performance improvement. Extensive ablation studies demonstrate the effectiveness of CTCD, and the small model distilled by CTCD outperforms the original larger model by a significant margin of 1.66 on the GLUE benchmark.
Quantum computing has recently emerged as a transformative technology. Yet, its promised advantages rely on efficiently translating quantum operations into viable physical realizations. In this work, we use generative machine learning models, specifically denoising diffusion models (DMs), to facilitate this transformation. Leveraging text-conditioning, we steer the model to produce desired quantum operations within gate-based quantum circuits. Notably, DMs allow to sidestep during training the exponential overhead inherent in the classical simulation of quantum dynamics -- a consistent bottleneck in preceding ML techniques. We demonstrate the model's capabilities across two tasks: entanglement generation and unitary compilation. The model excels at generating new circuits and supports typical DM extensions such as masking and editing to, for instance, align the circuit generation to the constraints of the targeted quantum device. Given their flexibility and generalization abilities, we envision DMs as pivotal in quantum circuit synthesis, enhancing both practical applications but also insights into theoretical quantum computation.
Augmented Reality (AR) has emerged as a significant advancement in surgical procedures, offering a solution to the challenges posed by traditional neuronavigation methods. These conventional techniques often necessitate surgeons to split their focus between the surgical site and a separate monitor that displays guiding images. Over the years, many systems have been developed to register and track the hologram at the targeted locations, each employed its own evaluation technique. On the other hand, hologram displacement measurement is not a straightforward task because of various factors such as occlusion, Vengence-Accomodation Conflict, and unstable holograms in space. In this study, we explore and classify different techniques for assessing an AR-assisted neurosurgery system and propose a new technique to systematize the assessment procedure. Moreover, we conduct a deeper investigation to assess surgeon error in the pre- and intra-operative phases of the surgery based on the respective feedback given. We found that although the system can undergo registration and tracking errors, physical feedback can significantly reduce the error caused by hologram displacement. However, the lack of visual feedback on the hologram does not have a significant effect on the user 3D perception.
To improve the predictability of complex computational models in the experimentally-unknown domains, we propose a Bayesian statistical machine learning framework utilizing the Dirichlet distribution that combines results of several imperfect models. This framework can be viewed as an extension of Bayesian stacking. To illustrate the method, we study the ability of Bayesian model averaging and mixing techniques to mine nuclear masses. We show that the global and local mixtures of models reach excellent performance on both prediction accuracy and uncertainty quantification and are preferable to classical Bayesian model averaging. Additionally, our statistical analysis indicates that improving model predictions through mixing rather than mixing of corrected models leads to more robust extrapolations.