亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep learning has shown successful application in visual recognition and certain artificial intelligence tasks. Deep learning is also considered as a powerful tool with high flexibility to approximate functions. In the present work, functions with desired properties are devised to approximate the solutions of PDEs. Our approach is based on a posteriori error estimation in which the adjoint problem is solved for the error localization to formulate an error estimator within the framework of neural network. An efficient and easy to implement algorithm is developed to obtain a posteriori error estimate for multiple goal functionals by employing the dual-weighted residual approach, which is followed by the computation of both primal and adjoint solutions using the neural network. The present study shows that such a data-driven model based learning has superior approximation of quantities of interest even with relatively less training data. The novel algorithmic developments are substantiated with numerical test examples. The advantages of using deep neural network over the shallow neural network are demonstrated and the convergence enhancing techniques are also presented

相關內容

We present a novel approach to adaptive optimal design of groundwater surveys - a methodology for choosing the location of the next monitoring well. Our dual-weighted approach borrows ideas from Bayesian Optimisation and goal-oriented error estimation to propose the next monitoring well, given that some data is already available from existing wells. Our method is distinct from other optimal design strategies in that it does not rely on Fisher Information and it instead directly exploits the posterior uncertainty and the expected solution to a dual (or adjoint) problem to construct an acquisition function that optimally reduces the uncertainty in the model as a whole and some engineering quantity of interest in particular. We demonstrate our approach in the context of 2D groundwater flow example and show that the dual-weighted approach outperforms the baseline approach with respect to reducing the error in the posterior estimate of the quantity of interest.

The manuscript discusses how to incorporate random effects for quantile regression models for clustered data with focus on settings with many but small clusters. The paper has three contributions: (i) documenting that existing methods may lead to severely biased estimators for fixed effects parameters; (ii) proposing a new two-step estimation methodology where predictions of the random effects are first computed {by a pseudo likelihood approach (the LQMM method)} and then used as offsets in standard quantile regression; (iii) proposing a novel bootstrap sampling procedure in order to reduce bias of the two-step estimator and compute confidence intervals. The proposed estimation and associated inference is assessed numerically through rigorous simulation studies and applied to an AIDS Clinical Trial Group (ACTG) study.

Intelligent reflecting surface (IRS) is a promising technology for beyond 5G wireless communications. In fully passive IRS-assisted systems, channel estimation is challenging and should be carried out only at the base station or at the terminals since the elements of the IRS are incapable of processing signals. In this letter, we formulate a tensor-based semi-blind receiver that solves the joint channel and symbol estimation problem in an IRS-assisted multi-user multiple-input multiple-output system. The proposed approach relies on a generalized PARATUCK tensor model of the signals reflected by the IRS, based on a two-stage closed-form semi-blind receiver using Khatri-Rao and Kronecker factorizations. Simulation results demonstrate the superior performance of the proposed semi-blind receiver, in terms of the normalized mean squared error and symbol error rate, as well as a lower computational complexity, compared to recently proposed parallel factor analysis-based receivers.

We introduce the "inverse bandit" problem of estimating the rewards of a multi-armed bandit instance from observing the learning process of a low-regret demonstrator. Existing approaches to the related problem of inverse reinforcement learning assume the execution of an optimal policy, and thereby suffer from an identifiability issue. In contrast, we propose to leverage the demonstrator's behavior en route to optimality, and in particular, the exploration phase, for reward estimation. We begin by establishing a general information-theoretic lower bound under this paradigm that applies to any demonstrator algorithm, which characterizes a fundamental tradeoff between reward estimation and the amount of exploration of the demonstrator. Then, we develop simple and efficient reward estimators for upper-confidence-based demonstrator algorithms that attain the optimal tradeoff, showing in particular that consistent reward estimation -- free of identifiability issues -- is possible under our paradigm. Extensive simulations on both synthetic and semi-synthetic data corroborate our theoretical results.

Data augmentation is commonly applied to improve performance of deep learning by enforcing the knowledge that certain transformations on the input preserve the output. Currently, the correct data augmentation is chosen by human effort and costly cross-validation, which makes it cumbersome to apply to new datasets. We develop a convenient gradient-based method for selecting the data augmentation. Our approach relies on phrasing data augmentation as an invariance in the prior distribution and learning it using Bayesian model selection, which has been shown to work in Gaussian processes, but not yet for deep neural networks. We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective, which can be optimised without human supervision or validation data. We show that our method can successfully recover invariances present in the data, and that this improves generalisation on image datasets.

Heatmap-based methods dominate in the field of human pose estimation by modelling the output distribution through likelihood heatmaps. In contrast, regression-based methods are more efficient but suffer from inferior performance. In this work, we explore maximum likelihood estimation (MLE) to develop an efficient and effective regression-based methods. From the perspective of MLE, adopting different regression losses is making different assumptions about the output density function. A density function closer to the true distribution leads to a better regression performance. In light of this, we propose a novel regression paradigm with Residual Log-likelihood Estimation (RLE) to capture the underlying output distribution. Concretely, RLE learns the change of the distribution instead of the unreferenced underlying distribution to facilitate the training process. With the proposed reparameterization design, our method is compatible with off-the-shelf flow models. The proposed method is effective, efficient and flexible. We show its potential in various human pose estimation tasks with comprehensive experiments. Compared to the conventional regression paradigm, regression with RLE bring 12.4 mAP improvement on MSCOCO without any test-time overhead. Moreover, for the first time, especially on multi-person pose estimation, our regression method is superior to the heatmap-based methods. Our code is available at //github.com/Jeff-sjtu/res-loglikelihood-regression

We study the problem of training deep neural networks with Rectified Linear Unit (ReLU) activiation function using gradient descent and stochastic gradient descent. In particular, we study the binary classification problem and show that for a broad family of loss functions, with proper random weight initialization, both gradient descent and stochastic gradient descent can find the global minima of the training loss for an over-parameterized deep ReLU network, under mild assumption on the training data. The key idea of our proof is that Gaussian random initialization followed by (stochastic) gradient descent produces a sequence of iterates that stay inside a small perturbation region centering around the initial weights, in which the empirical loss function of deep ReLU networks enjoys nice local curvature properties that ensure the global convergence of (stochastic) gradient descent. Our theoretical results shed light on understanding the optimization of deep learning, and pave the way to study the optimization dynamics of training modern deep neural networks.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

This research mainly emphasizes on traffic detection thus essentially involving object detection and classification. The particular work discussed here is motivated from unsatisfactory attempts of re-using well known pre-trained object detection networks for domain specific data. In this course, some trivial issues leading to prominent performance drop are identified and ways to resolve them are discussed. For example, some simple yet relevant tricks regarding data collection and sampling prove to be very beneficial. Also, introducing a blur net to deal with blurred real time data is another important factor promoting performance elevation. We further study the neural network design issues for beneficial object classification and involve shared, region-independent convolutional features. Adaptive learning rates to deal with saddle points are also investigated and an average covariance matrix based pre-conditioned approach is proposed. We also introduce the use of optical flow features to accommodate orientation information. Experimental results demonstrate that this results in a steady rise in the performance rate.

The Residual Networks of Residual Networks (RoR) exhibits excellent performance in the image classification task, but sharply increasing the number of feature map channels makes the characteristic information transmission incoherent, which losses a certain of information related to classification prediction, limiting the classification performance. In this paper, a Pyramidal RoR network model is proposed by analysing the performance characteristics of RoR and combining with the PyramidNet. Firstly, based on RoR, the Pyramidal RoR network model with channels gradually increasing is designed. Secondly, we analysed the effect of different residual block structures on performance, and chosen the residual block structure which best favoured the classification performance. Finally, we add an important principle to further optimize Pyramidal RoR networks, drop-path is used to avoid over-fitting and save training time. In this paper, image classification experiments were performed on CIFAR-10/100 and SVHN datasets, and we achieved the current lowest classification error rates were 2.96%, 16.40% and 1.59%, respectively. Experiments show that the Pyramidal RoR network optimization method can improve the network performance for different data sets and effectively suppress the gradient disappearance problem in DCNN training.

北京阿比特科技有限公司