亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-modal robots expand their operations from one working medium to another, land to air for example. The majorities of multi-modal robots mainly refer to platforms that operate in two different media. However, for all-terrain tasks, there are seldom research to date in the literature. Generally, locomotions in different working media, i.e. land, water and air, require different propelling actuators, and thus the triphibian system becomes bulky. To overcome this challenge, we proposed a triphibian robot and provide the robot with driving forces to perform all-terrain operations in an efficient way. A morphable mechanism is designed to enable the transition between different motion modes, and specifically a cylindrical body is implemented as the rolling mechanism in land mode. Detailed design principles of different mechanisms and the transition between various locomotion modes are analyzed. Finally, a triphibian robot prototype is fabricated and tested in various working media with both mono-modal and multi-modal functionalities. Experiments have verified our platform, and the results show promising adaptions in future exploration tasks in various working scenarios.

相關內容

機(ji)器(qi)人(英語:Robot)包括一切(qie)模(mo)擬人類行為或思想與(yu)模(mo)擬其他生物(wu)的(de)機(ji)械(如機(ji)器(qi)狗,機(ji)器(qi)貓等)。狹義上對機(ji)器(qi)人的(de)定義還有(you)很多分(fen)類法(fa)及爭(zheng)議,有(you)些電腦(nao)程序(xu)甚(shen)至也(ye)被稱為機(ji)器(qi)人。在當代(dai)工(gong)業中,機(ji)器(qi)人指(zhi)能自動(dong)運行任務的(de)人造機(ji)器(qi)設(she)備(bei),用以取代(dai)或協助(zhu)人類工(gong)作,一般會是(shi)機(ji)電設(she)備(bei),由計算機(ji)程序(xu)或是(shi)電子電路(lu)控制。

知識薈萃

精品入門和(he)進(jin)階(jie)教程、論文和(he)代碼(ma)整(zheng)理等

更多

查看相關(guan)VIP內容、論(lun)文、資(zi)訊等

The author introduced models of linear logic known as ''Interaction Graphs'' which generalise Girard's various geometry of interaction constructions. In this work, we establish how these models essentially rely on a deep connection between zeta functions and the execution of programs, expressed as a cocycle. This is first shown in the simple case of graphs, before begin lifted to dynamical systems. Focussing on probabilistic models, we then explain how the notion of graphings used in Interaction Graphs captures a natural class of sub-Markov processes. We then extend the realisability constructions and the notion of zeta function to provide a realisability model of second-order linear logic over the set of all (discrete-time) sub-Markov processes.

Our goal is to perform out-of-distribution (OOD) detection, i.e., to detect when a robot is operating in environments drawn from a different distribution than the ones used to train the robot. We leverage Probably Approximately Correct (PAC)-Bayes theory to train a policy with a guaranteed bound on performance on the training distribution. Our idea for OOD detection relies on the following intuition: violation of the performance bound on test environments provides evidence that the robot is operating OOD. We formalize this via statistical techniques based on p-values and concentration inequalities. The approach provides guaranteed confidence bounds on OOD detection including bounds on both the false positive and false negative rates of the detector and is task-driven and only sensitive to changes that impact the robot's performance. We demonstrate our approach in simulation and hardware for a grasping task using objects with unfamiliar shapes or poses and a drone performing vision-based obstacle avoidance in environments with wind disturbances and varied obstacle densities. Our examples demonstrate that we can perform task-driven OOD detection within just a handful of trials.

Using model weights pretrained on a high-resource language as a warm start can reduce the need for data and compute to obtain high-quality language models for other, especially low-resource, languages. However, if we want to use a new tokenizer specialized for the target language, we cannot transfer the source model's embedding matrix. In this paper, we propose FOCUS - Fast Overlapping Token Combinations Using Sparsemax, a novel embedding initialization method that initializes the embedding matrix effectively for a new tokenizer based on information in the source model's embedding matrix. FOCUS represents newly added tokens as combinations of tokens in the overlap of the source and target vocabularies. The overlapping tokens are selected based on semantic similarity in an auxiliary static token embedding space. We focus our study on using the multilingual XLM-R as a source model and empirically show that FOCUS outperforms random initialization and previous work in language modeling and on a range of downstream tasks (NLI, QA, and NER).

A robot deployed in a home over long stretches of time faces a true lifelong learning problem. As it seeks to provide assistance to its users, the robot should leverage any accumulated experience to improve its own knowledge and proficiency. We formalize this setting with a novel formulation of lifelong learning for task and motion planning (TAMP), which endows our learner with the compositionality of TAMP systems. Exploiting the modularity of TAMP, we develop a mixture of generative models that produces candidate continuous parameters for a planner. Whereas most existing lifelong learning approaches determine a priori how data is shared across various models, our approach learns shared and non-shared models and determines which to use online during planning based on auxiliary tasks that serve as a proxy for each model's understanding of a state. Our method exhibits substantial improvements (over time and compared to baselines) in planning success on 2D and BEHAVIOR domains.

Accurately modeling soft robots remains a challenge due to their inherent nonlinear behavior and parameter variations. This paper presents a novel approach to modeling soft pneumatic actuators using a nonlinear parameter-varying framework. The research begins by introducing Ludwick's Law, providing a more accurate representation of the complex mechanical behavior exhibited by soft materials. Three key material properties, namely Young's modulus, tensile stress, and mixed viscosity, are utilized to estimate the parameter inside the nonlinear model using the least squares method. Subsequently, a nonlinear dynamic model for soft actuators is constructed by applying Ludwick's Law. To validate the accuracy and effectiveness of the proposed method, experimental validations are performed. We perform several experiments, demonstrating the model's capabilities in predicting the dynamical behavior of soft pneumatic actuators. In conclusion, this work contributes to the advancement of soft pneumatic actuator modeling that represents their nonlinear behavior.

Retrieving relevant plots from the book for a query is a critical task, which can improve the reading experience and efficiency of readers. Readers usually only give an abstract and vague description as the query based on their own understanding, summaries, or speculations of the plot, which requires the retrieval model to have a strong ability to estimate the abstract semantic associations between the query and candidate plots. However, existing information retrieval (IR) datasets cannot reflect this ability well. In this paper, we propose Plot Retrieval, a labeled dataset to train and evaluate the performance of IR models on the novel task Plot Retrieval. Text pairs in Plot Retrieval have less word overlap and more abstract semantic association, which can reflect the ability of the IR models to estimate the abstract semantic association, rather than just traditional lexical or semantic matching. Extensive experiments across various lexical retrieval, sparse retrieval, dense retrieval, and cross-encoder methods compared with human studies on Plot Retrieval show current IR models still struggle in capturing abstract semantic association between texts. Plot Retrieval can be the benchmark for further research on the semantic association modeling ability of IR models.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司