Given a vector dataset $\mathcal{X}$ and a query vector $\vec{x}_q$, graph-based Approximate Nearest Neighbor Search (ANNS) aims to build a graph index $G$ and approximately return vectors with minimum distances to $\vec{x}_q$ by searching over $G$. The main drawback of graph-based ANNS is that a graph index would be too large to fit into the memory especially for a large-scale $\mathcal{X}$. To solve this, a Product Quantization (PQ)-based hybrid method called DiskANN is proposed to store a low-dimensional PQ index in memory and retain a graph index in SSD, thus reducing memory overhead while ensuring a high search accuracy. However, it suffers from two I/O issues that significantly affect the overall efficiency: (1) long routing path from an entry vertex to the query's neighborhood that results in large number of I/O requests and (2) redundant I/O requests during the routing process. We propose an optimized DiskANN++ to overcome above issues. Specifically, for the first issue, we present a query-sensitive entry vertex selection strategy to replace DiskANN's static graph-central entry vertex by a dynamically determined entry vertex that is close to the query. For the second I/O issue, we present an isomorphic mapping on DiskANN's graph index to optimize the SSD layout and propose an asynchronously optimized Pagesearch based on the optimized SSD layout as an alternative to DiskANN's beamsearch. Comprehensive experimental studies on eight real-world datasets demonstrate our DiskANN++'s superiority on efficiency. We achieve a notable 1.5 X to 2.2 X improvement on QPS compared to DiskANN, given the same accuracy constraint.
Similar to other programming models, compilers for SYCL, the open programming model for heterogeneous computing based on C++, would benefit from access to higher-level intermediate representations. The loss of high-level structure and semantics caused by premature lowering to low-level intermediate representations and the inability to reason about host and device code simultaneously present major challenges for SYCL compilers. The MLIR compiler framework, through its dialect mechanism, allows to model domain-specific, high-level intermediate representations and provides the necessary facilities to address these challenges. This work therefore describes practical experience with the design and implementation of an MLIR-based SYCL compiler. By modeling key elements of the SYCL programming model in host and device code in the MLIR dialect framework, the presented approach enables the implementation of powerful device code optimizations as well as analyses across host and device code. Compared to two LLVM-based SYCL implementations, this yields speedups of up to 4.3x on a collection of SYCL benchmark applications. Finally, this work also discusses challenges encountered in the design and implementation and how these could be addressed in the future.
Originating in Girard's Linear logic, Ehrhard and Regnier's Taylor expansion of $\lambda$-terms has been broadly used as a tool to approximate the terms of several variants of the $\lambda$-calculus. Many results arise from a Commutation theorem relating the normal form of the Taylor expansion of a term to its B\"ohm tree. This led us to consider extending this formalism to the infinitary $\lambda$-calculus, since the $\Lambda_{\infty}^{001}$ version of this calculus has B\"ohm trees as normal forms and seems to be the ideal framework to reformulate the Commutation theorem. We give a (co-)inductive presentation of $\Lambda_{\infty}^{001}$. We define a Taylor expansion on this calculus, and state that the infinitary $\beta$-reduction can be simulated through this Taylor expansion. The target language is the usual resource calculus, and in particular the resource reduction remains finite, confluent and terminating. Finally, we state the generalised Commutation theorem and use our results to provide simple proofs of some normalisation and confluence properties in the infinitary $\lambda$-calculus.
We propose GLL-based context-free path querying algorithm which handles queries in Extended Backus-Naur Form (EBNF) using Recursive State Machines (RSM). Utilization of EBNF allows one to combine traditional regular expressions and mutually recursive patterns in constraints natively. The proposed algorithm solves both the reachability-only and the all-paths problems for the all-pairs and the multiple sources cases. The evaluation on realworld graphs demonstrates that utilization of RSMs increases performance of query evaluation. Being implemented as a stored procedure for Neo4j, our solution demonstrates better performance than a similar solution for RedisGraph. Performance of our solution of regular path queries is comparable with performance of native Neo4j solution, and in some cases our solution requires significantly less memory.
Causal Structure Learning (CSL), amounting to extracting causal relations among the variables in a dataset, is widely perceived as an important step towards robust and transparent models. Constraint-based CSL leverages conditional independence tests to perform causal discovery. We propose Shapley-PC, a novel method to improve constraint-based CSL algorithms by using Shapley values over the possible conditioning sets to decide which variables are responsible for the observed conditional (in)dependences. We prove soundness and asymptotic consistency and demonstrate that it can outperform state-of-the-art constraint-based, search-based and functional causal model-based methods, according to standard metrics in CSL.
We present a randomized algorithm that computes single-source shortest paths (SSSP) in $O(m\log^8(n)\log W)$ time when edge weights are integral and can be negative. This essentially resolves the classic negative-weight SSSP problem. The previous bounds are $\tilde O((m+n^{1.5})\log W)$ [BLNPSSSW FOCS'20] and $m^{4/3+o(1)}\log W$ [AMV FOCS'20]. Near-linear time algorithms were known previously only for the special case of planar directed graphs [Fakcharoenphol and Rao FOCS'01]. In contrast to all recent developments that rely on sophisticated continuous optimization methods and dynamic algorithms, our algorithm is simple: it requires only a simple graph decomposition and elementary combinatorial tools. In fact, ours is the first combinatorial algorithm for negative-weight SSSP to break through the classic $\tilde O(m\sqrt{n}\log W)$ bound from over three decades ago [Gabow and Tarjan SICOMP'89].
Subgraph-based graph representation learning (SGRL) has recently emerged as a powerful tool in many prediction tasks on graphs due to its advantages in model expressiveness and generalization ability. Most previous SGRL models face computational issues associated with the high cost of subgraph extraction for each training or test query. Recently, SUREL was proposed to accelerate SGRL, which samples random walks offline and joins these walks online as a proxy of subgraphs for representation learning. Thanks to the reusability of sampled walks across different queries, SUREL achieves state-of-the-art performance in terms of scalability and prediction accuracy. However, SUREL still suffers from high computational overhead caused by node redundancy in sampled walks. In this work, we propose a novel framework SUREL+ that upgrades SUREL by using node sets instead of walks to represent subgraphs. This set-based representation avoids repeated nodes by definition, but node sets can be irregular in size. To address this issue, we design a customized sparse data structure to efficiently store and index node sets, and provide a specialized operator to join them in parallel batches. SUREL+ is modularized to support multiple types of set samplers, structural features, and neural encoders to complement the structure information loss after the reduction from walks to sets. Extensive experiments have been performed to validate SUREL+ in the prediction tasks of links, relation types, and higher-order patterns. SUREL+ achieves 3-11$\times$ speedups of SUREL while maintaining comparable or even better prediction performance; compared to other SGRL baselines, SUREL+ achieves $\sim$20$\times$ speedups and significantly improves the prediction accuracy.
We present algorithms for the computation of $\varepsilon$-coresets for $k$-median clustering of point sequences in $\mathbb{R}^d$ under the $p$-dynamic time warping (DTW) distance. Coresets under DTW have not been investigated before, and the analysis is not directly accessible to existing methods as DTW is not a metric. The three main ingredients that allow our construction of coresets are the adaptation of the $\varepsilon$-coreset framework of sensitivity sampling, bounds on the VC dimension of approximations to the range spaces of balls under DTW, and new approximation algorithms for the $k$-median problem under DTW. We achieve our results by investigating approximations of DTW that provide a trade-off between the provided accuracy and amenability to known techniques. In particular, we observe that given $n$ curves under DTW, one can directly construct a metric that approximates DTW on this set, permitting the use of the wealth of results on metric spaces for clustering purposes. The resulting approximations are the first with polynomial running time and achieve a very similar approximation factor as state-of-the-art techniques. We apply our results to produce a practical algorithm approximating $(k,\ell)$-median clustering under DTW.
Recently, Akbari, Eslami, Lievonen, Melnyk, S\"{a}rkij\"{a}rvi, and Suomela (ICALP 2023) studied the locality of graph problems in distributed, sequential, dynamic, and online settings from a unified point of view. They designed a novel $O(\log n)$-locality algorithm for proper 3-coloring bipartite graphs in the $\mathsf{Online}$-$\mathsf{LOCAL}$ model. In this work, we show the optimality of the algorithm by demonstrating a tight $\Omega(\log n)$ locality lower bound which holds even on grids. Moreover, we show a higher $\Omega(\sqrt{n})$ lower bound for 3-coloring toroidal and cylindrical grids.
Given a graph $G$, an integer $k\geq 0$, and a non-negative integral function $f:V(G) \rightarrow \mathcal{N}$, the {\sc Vector Domination} problem asks whether a set $S$ of vertices, of cardinality $k$ or less, exists in $G$ so that every vertex $v \in V(G)-S$ has at least $f(v)$ neighbors in $S$. The problem generalizes several domination problems and it has also been shown to generalize Bounded-Degree Vertex Deletion. In this paper, the parameterized version of Vector Domination is studied when the input graph is planar. A linear problem kernel is presented.
Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.