Fingerprints feature a ridge pattern with moderately varying ridge frequency (RF), following an orientation field (OF), which usually features some singularities. Additionally at some points, called minutiae, ridge lines end or fork and this point pattern is usually used for fingerprint identification and authentication. Whenever the OF features divergent ridge lines (e.g. near singularities), a nearly constant RF necessitates the generation of more ridge lines, originating at minutiae. We call these the necessary minutiae. It turns out that fingerprints feature additional minutiae which occur at rather arbitrary locations. We call these the random minutiae or, since they may convey fingerprint individuality beyond the OF, the characteristic minutiae. In consequence, the minutiae point pattern is assumed to be a realization of the superposition of two stochastic point processes: a Strauss point process (whose activity function is given by the divergence field) with an additional hard core, and a homogeneous Poisson point process, modelling the necessary and the characteristic minutiae, respectively. We perform Bayesian inference using an MCMC-based minutiae separating algorithm (MiSeal). In simulations, it provides good mixing and good estimation of underlying parameters. In application to fingerprints, we can separate the two minutiae patterns and verify by example of two different prints with similar OF that characteristic minutiae convey fingerprint individuality.
Traditional power grids are evolving to keep pace with the demands of the modern age. Smart grids contain integrated IT systems for better management and efficiency, but in doing so, also inherit a plethora of cyber-security threats and vulnerabilities. Denial-of-Service (DoS) is one such threat. At the same time, the smart grid has particular characteristics (e.g. minimal delay tolerance), which can influence the nature of threats and so require special consideration. In this paper, we identify a set of possible smart grid-specific DoS scenarios based on current research, and analyse them in the context of the grid components they target. Based on this, we propose a novel target-based classification scheme and further characterise each scenario by qualitatively exploring it in the context of the underlying grid infrastructure. This culminates in a smart grid-centric analysis of the threat to reveal the nature of DoS in this environment.
This article proposes a mortar type finite element formulation for consistently embedding curved, slender beams, i.e. 1D Cosserat continua, into 3D solid volumes. A consistent 1D-3D coupling scheme for this problem type is proposed, which enforces both positional and rotational constraints. Since Boltzmann continua exhibit no inherent rotational degrees of freedom, suitable definitions of orthonormal triads are investigated that are representative for the orientation of material directions in the 3D solid. The rotation tensor defined by the polar decomposition of the deformation gradient is demonstrated to represent these material directions in a L2-optimal manner. Subsequently, objective rotational coupling constraints between beam and solid are formulated and enforced in a variationally consistent framework. Eventually, finite element discretization of all primary fields results in an embedded mortar formulation for rotational and translational constraint enforcement. Based on carefully chosen numerical test cases, the proposed scheme is demonstrated to exhibit a consistent spatial convergence behavior and to offer the up-scaling potential for studying real-life engineering applications such as fiber-reinforced composite materials.
Closed-circuit television (CCTV) systems are essential nowadays to prevent security threats or dangerous situations, in which early detection is crucial. Novel deep learning-based methods have allowed to develop automatic weapon detectors with promising results. However, these approaches are mainly based on visual weapon appearance only. For handguns, body pose may be a useful cue, especially in cases where the gun is barely visible. In this work, a novel method is proposed to combine, in a single architecture, both weapon appearance and human pose information. First, pose keypoints are estimated to extract hand regions and generate binary pose images, which are the model inputs. Then, each input is processed in different subnetworks and combined to produce the handgun bounding box. Results obtained show that the combined model improves the handgun detection state of the art, achieving from 4.23 to 18.9 AP points more than the best previous approach.
Compression aims to reduce the size of an input, while maintaining its relevant properties. For multi-parameter persistent homology, compression is a necessary step in any computational pipeline, since standard constructions lead to large inputs, and computational tasks in this area tend to be expensive. We propose two compression methods for chain complexes of free 2-parameter persistence modules. The first method extends the multi-chunk algorithm for one-parameter persistent homology, returning the smallest chain complex among all the ones quasi-isomorphic to the input. The second method produces minimal presentations of the homology of the input; it is based on an algorithm of Lesnick and Wright, but incorporates several improvements that lead to dramatic performance gains. The two methods are complementary, and can be combined to compute minimal presentations for complexes with millions of generators in a few seconds. The methods have been implemented, and the software is publicly available. We report on experimental evaluations, which demonstrate substantial improvements in performance compared to previously available compression strategies.
This paper establishes a precise high-dimensional asymptotic theory for boosting on separable data, taking statistical and computational perspectives. We consider a high-dimensional setting where the number of features (weak learners) $p$ scales with the sample size $n$, in an overparametrized regime. Under a class of statistical models, we provide an exact analysis of the generalization error of boosting when the algorithm interpolates the training data and maximizes the empirical $\ell_1$-margin. Further, we explicitly pin down the relation between the boosting test error and the optimal Bayes error, as well as the proportion of active features at interpolation (with zero initialization). In turn, these precise characterizations answer certain questions raised in \cite{breiman1999prediction, schapire1998boosting} surrounding boosting, under assumed data generating processes. At the heart of our theory lies an in-depth study of the maximum-$\ell_1$-margin, which can be accurately described by a new system of non-linear equations; to analyze this margin, we rely on Gaussian comparison techniques and develop a novel uniform deviation argument. Our statistical and computational arguments can handle (1) any finite-rank spiked covariance model for the feature distribution and (2) variants of boosting corresponding to general $\ell_q$-geometry, $q \in [1, 2]$. As a final component, via the Lindeberg principle, we establish a universality result showcasing that the scaled $\ell_1$-margin (asymptotically) remains the same, whether the covariates used for boosting arise from a non-linear random feature model or an appropriately linearized model with matching moments.
It is known that testing isomorphism of chordal graphs is as hard as the general graph isomorphism problem. Every chordal graph can be represented as the intersection graph of some subtrees of a tree. The leafage of a chordal graph, is defined to be the minimum number of leaves in the representing tree. We construct a fixed-parameter tractable algorithm testing isomorphism of chordal graphs with bounded leafage. The key point is a fixed-parameter tractable algorithm finding the automorphism group of a colored order-3 hypergraph with bounded sizes of color classes of vertices.
We consider parameter estimation in distributed networks, where each sensor in the network observes an independent sample from an underlying distribution and has $k$ bits to communicate its sample to a centralized processor which computes an estimate of a desired parameter. We develop lower bounds for the minimax risk of estimating the underlying parameter for a large class of losses and distributions. Our results show that under mild regularity conditions, the communication constraint reduces the effective sample size by a factor of $d$ when $k$ is small, where $d$ is the dimension of the estimated parameter. Furthermore, this penalty reduces at most exponentially with increasing $k$, which is the case for some models, e.g., estimating high-dimensional distributions. For other models however, we show that the sample size reduction is re-mediated only linearly with increasing $k$, e.g. when some sub-Gaussian structure is available. We apply our results to the distributed setting with product Bernoulli model, multinomial model, Gaussian location models, and logistic regression which recover or strengthen existing results. Our approach significantly deviates from existing approaches for developing information-theoretic lower bounds for communication-efficient estimation. We circumvent the need for strong data processing inequalities used in prior work and develop a geometric approach which builds on a new representation of the communication constraint. This approach allows us to strengthen and generalize existing results with simpler and more transparent proofs.
Discrete Bayesian nonparametric models whose expectation is a convex linear combination of a point mass at some point of the support and a diffuse probability distribution allow to incorporate strong prior information, while still being extremely flexible. Recent contributions in the statistical literature have successfully implemented such a modelling strategy in a variety of applications, including density estimation, nonparametric regression and model-based clustering. We provide a thorough study of a large class of nonparametric models we call inner spike and slab hNRMI models, which are obtained by considering homogeneous normalized random measures with independent increments (hNRMI) with base measure given by a convex linear combination of a point mass and a diffuse probability distribution. In this paper we investigate the distributional properties of these models and our results include: i) the exchangeable partition probability function they induce, ii) the distribution of the number of distinct values in an exchangeable sample, iii) the posterior predictive distribution, and iv) the distribution of the number of elements that coincide with the only point of the support with positive probability. Our findings are the main building block for an actual implementation of Bayesian inner spike and slab hNRMI models by means of a generalized P\'olya urn scheme.
Due to its high spatial and spectral information content, hyperspectral imaging opens up new possibilities for a better understanding of data and scenes in a wide variety of applications. An essential part of this process of understanding is the classification part. In this article we present a general classification approach based on the shape of spectral signatures. In contrast to classical classification approaches (e.g. SVM, KNN), not only reflectance values are considered, but also parameters such as curvature points, curvature values, and the curvature behavior of spectral signatures are used to develop shape-describing rules in order to use them for classification by a rule-based procedure using IF-THEN queries. The flexibility and efficiency of the methodology is demonstrated using datasets from two different application fields and leads to convincing results with good performance.
We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.