亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Given a random matrix $X= (x_1,\ldots, x_n)\in \mathcal M_{p,n}$ with independent columns and satisfying concentration of measure hypotheses and a parameter $z$ whose distance to the spectrum of $\frac{1}{n} XX^T$ should not depend on $p,n$, it was previously shown that the functionals $\text{tr}(AR(z))$, for $R(z) = (\frac{1}{n}XX^T- zI_p)^{-1}$ and $A\in \mathcal M_{p}$ deterministic, have a standard deviation of order $O(\|A\|_* / \sqrt n)$. Here, we show that $\|\mathbb E[R(z)] - \tilde R(z)\|_F \leq O(1/\sqrt n)$, where $\tilde R(z)$ is a deterministic matrix depending only on $z$ and on the means and covariances of the column vectors $x_1,\ldots, x_n$ (that do not have to be identically distributed). This estimation is key to providing accurate fluctuation rates of functionals of $X$ of interest (mostly related to its spectral properties) and is proved thanks to the introduction of a semi-metric $d_s$ defined on the set $\mathcal D_n(\mathbb H)$ of diagonal matrices with complex entries and positive imaginary part and satisfying, for all $D,D' \in \mathcal D_n(\mathbb H)$: $d_s(D,D') = \max_{i\in[n]} |D_i - D_i'|/ (\Im(D_i) \Im(D_i'))^{1/2}$. Possibly most importantly, the underlying concentration of measure assumption on the columns of $X$ finds an extremely natural ground for application in modern statistical machine learning algorithms where non-linear Lipschitz mappings and high number of classes form the base ingredients.

相關內容

We consider the "all-for-one" decentralized learning problem for generalized linear models. The features of each sample are partitioned among several collaborating agents in a connected network, but only one agent observes the response variables. To solve the regularized empirical risk minimization in this distributed setting, we apply the Chambolle--Pock primal--dual algorithm to an equivalent saddle-point formulation of the problem. The primal and dual iterations are either in closed-form or reduce to coordinate-wise minimization of scalar convex functions. We establish convergence rates for the empirical risk minimization under two different assumptions on the loss function (Lipschitz and square root Lipschitz), and show how they depend on the characteristics of the design matrix and the Laplacian of the network.

We consider the problem of approximating the arboricity of a graph $G= (V,E)$, which we denote by $\mathsf{arb}(G)$, in sublinear time, where the arboricity of a graph is the minimal number of forests required to cover its edges. An algorithm for this problem may perform degree and neighbor queries, and is allowed a small error probability. We design an algorithm that outputs an estimate $\hat{\alpha}$, such that with probability $1-1/\textrm{poly}(n)$, $\mathsf{arb}(G)/c\log^2 n \leq \hat{\alpha} \leq \mathsf{arb}(G)$, where $n=|V|$ and $c$ is a constant. The expected query complexity and running time of the algorithm are $O(n/\mathsf{arb}(G))\cdot \textrm{poly}(\log n)$, and this upper bound also holds with high probability. %($\widetilde{O}(\cdot)$ is used to suppress $\textrm{poly}(\log n)$ dependencies). This bound is optimal for such an approximation up to a $\textrm{poly}(\log n)$ factor.

We revisit the problem of finding optimal strategies for deterministic Markov Decision Processes (DMDPs), and a closely related problem of testing feasibility of systems of $m$ linear inequalities on $n$ real variables with at most two variables per inequality (2VPI). We give a randomized trade-off algorithm solving both problems and running in $\tilde{O}(nmh+(n/h)^3)$ time using $\tilde{O}(n^2/h+m)$ space for any parameter $h\in [1,n]$. In particular, using subquadratic space we get $\tilde{O}(nm+n^{3/2}m^{3/4})$ running time, which improves by a polynomial factor upon all the known upper bounds for non-dense instances with $m=O(n^{2-\epsilon})$. Moreover, using linear space we match the randomized $\tilde{O}(nm+n^3)$ time bound of Cohen and Megiddo [SICOMP'94] that required $\tilde{\Theta}(n^2+m)$ space. Additionally, we show a new algorithm for the Discounted All-Pairs Shortest Paths problem, introduced by Madani et al. [TALG'10], that extends the DMDPs with optional end vertices. For the case of uniform discount factors, we give a deterministic algorithm running in $\tilde{O}(n^{3/2}m^{3/4})$ time, which improves significantly upon the randomized bound $\tilde{O}(n^2\sqrt{m})$ of Madani et al.

Johnson-Lindenstrauss lemma states random projections can be used as a topology preserving embedding technique for fixed vectors. In this paper, we try to understand how random projections affect probabilistic properties of random vectors. In particular we prove the distribution of inner product of two independent random vectors $X, Z \in {R}^n$ is preserved by random projection $S:{R}^n \to {R}^m$. More precisely, \[ \sup_t \left| \text{P}(\frac{1}{C_{m,n}} X^TS^TSZ <t) - \text{P}(\frac{1}{\sqrt{n}} X^TZ<t) \right| \le O\left(\frac{1}{\sqrt{n}}+ \frac{1}{\sqrt{m}} \right) \] As a by-product, we obtain product central limit theorem (product-CLT) for $\sum_{k=1}^{n} X_k Y_k$, where $\{X_k\}$ is a martingale difference sequence, and $\{Y_k\}$ has dependency within the sequence. We also obtain the rate of convergence in the spirit of Berry-Esseen theorem.

We study efficient distributed algorithms for the fundamental problem of principal component analysis and leading eigenvector computation on the sphere, when the data are randomly distributed among a set of computational nodes. We propose a new quantized variant of Riemannian gradient descent to solve this problem, and prove that the algorithm converges with high probability under a set of necessary spherical-convexity properties. We give bounds on the number of bits transmitted by the algorithm under common initialization schemes, and investigate the dependency on the problem dimension in each case.

In this paper we study the asymptotic theory for spectral analysis of stationary random fields, including linear and nonlinear fields. Asymptotic properties of Fourier coefficients and periodograms, including limiting distributions of Fourier coefficients, and the uniform consistency of kernel spectral density estimators are obtained under various mild conditions on moments and dependence structures. The validity of the aforementioned asymptotic results for estimated spatial fields is also established.

Consider the task of matrix estimation in which a dataset $X \in \mathbb{R}^{n\times m}$ is observed with sparsity $p$, and we would like to estimate $\mathbb{E}[X]$, where $\mathbb{E}[X_{ui}] = f(\alpha_u, \beta_i)$ for some Holder smooth function $f$. We consider the setting where the row covariates $\alpha$ are unobserved yet the column covariates $\beta$ are observed. We provide an algorithm and accompanying analysis which shows that our algorithm improves upon naively estimating each row separately when the number of rows is not too small. Furthermore when the matrix is moderately proportioned, our algorithm achieves the minimax optimal nonparametric rate of an oracle algorithm that knows the row covariates. In simulated experiments we show our algorithm outperforms other baselines in low data regimes.

We extend the theory of distance (Brownian) covariance from Euclidean spaces, where it was introduced by Sz\'{e}kely, Rizzo and Bakirov, to general metric spaces. We show that for testing independence, it is necessary and sufficient that the metric space be of strong negative type. In particular, we show that this holds for separable Hilbert spaces, which answers a question of Kosorok. Instead of the manipulations of Fourier transforms used in the original work, we use elementary inequalities for metric spaces and embeddings in Hilbert spaces.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司