亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Parameter-efficient fine-tuning (PEFT) has shown its effectiveness in adapting the pre-trained language models to downstream tasks while only updating a small number of parameters. Despite the success, most existing methods independently adapt to each task without considering knowledge transfer between tasks and are limited to low-data regimes. To overcome this issue, we propose Prototype-based HyperAdapter (PHA), a novel framework built on the adapter-tuning and hypernetwork. It introduces an instance-dense retriever and a prototypical hypernetwork to generate the conditional modules in a sample-efficient manner. This leads to comparable performance improvements against existing PEFT methods on multi-task learning and few-shot transfer learning. More importantly, when the available data size gets smaller, our method outperforms other strong baselines by a large margin. Based on our extensive empirical experiments across various datasets, we demonstrate that PHA strikes a better trade-off between trainable parameters, accuracy on stream tasks, and sample efficiency.

相關內容

This paper studies the fundamental learning problem of the energy-based model (EBM). Learning the EBM can be achieved using the maximum likelihood estimation (MLE), which typically involves the Markov Chain Monte Carlo (MCMC) sampling, such as the Langevin dynamics. However, the noise-initialized Langevin dynamics can be challenging in practice and hard to mix. This motivates the exploration of joint training with the generator model where the generator model serves as a complementary model to bypass MCMC sampling. However, such a method can be less accurate than the MCMC and result in biased EBM learning. While the generator can also serve as an initializer model for better MCMC sampling, its learning can be biased since it only matches the EBM and has no access to empirical training examples. Such biased generator learning may limit the potential of learning the EBM. To address this issue, we present a joint learning framework that interweaves the maximum likelihood learning algorithm for both the EBM and the complementary generator model. In particular, the generator model is learned by MLE to match both the EBM and the empirical data distribution, making it a more informative initializer for MCMC sampling of EBM. Learning generator with observed examples typically requires inference of the generator posterior. To ensure accurate and efficient inference, we adopt the MCMC posterior sampling and introduce a complementary inference model to initialize such latent MCMC sampling. We show that three separate models can be seamlessly integrated into our joint framework through two (dual-) MCMC teaching, enabling effective and efficient EBM learning.

The autonomous driving community has shown significant interest in 3D occupancy prediction, driven by its exceptional geometric perception and general object recognition capabilities. To achieve this, current works try to construct a Tri-Perspective View (TPV) or Occupancy (OCC) representation extending from the Bird-Eye-View perception. However, compressed views like TPV representation lose 3D geometry information while raw and sparse OCC representation requires heavy but reducant computational costs. To address the above limitations, we propose Compact Occupancy TRansformer (COTR), with a geometry-aware occupancy encoder and a semantic-aware group decoder to reconstruct a compact 3D OCC representation. The occupancy encoder first generates a compact geometrical OCC feature through efficient explicit-implicit view transformation. Then, the occupancy decoder further enhances the semantic discriminability of the compact OCC representation by a coarse-to-fine semantic grouping strategy. Empirical experiments show that there are evident performance gains across multiple baselines, e.g., COTR outperforms baselines with a relative improvement of 8%-15%, demonstrating the superiority of our method.

Injecting external knowledge can improve the performance of pre-trained language models (PLMs) on various downstream NLP tasks. However, massive retraining is required to deploy new knowledge injection methods or knowledge bases for downstream tasks. In this work, we are the first to study how to improve the flexibility and efficiency of knowledge injection by reusing existing downstream models. To this end, we explore a new paradigm plug-and-play knowledge injection, where knowledge bases are injected into frozen existing downstream models by a knowledge plugin. Correspondingly, we propose a plug-and-play injection method map-tuning, which trains a mapping of knowledge embeddings to enrich model inputs with mapped embeddings while keeping model parameters frozen. Experimental results on three knowledge-driven NLP tasks show that existing injection methods are not suitable for the new paradigm, while map-tuning effectively improves the performance of downstream models. Moreover, we show that a frozen downstream model can be well adapted to different domains with different mapping networks of domain knowledge. Our code and models are available at //github.com/THUNLP/Knowledge-Plugin.

Temporal knowledge graphs (TKGs) have been identified as a promising approach to represent the dynamics of facts along the timeline. The extrapolation of TKG is to predict unknowable facts happening in the future, holding significant practical value across diverse fields. Most extrapolation studies in TKGs focus on modeling global historical fact repeating and cyclic patterns, as well as local historical adjacent fact evolution patterns, showing promising performance in predicting future unknown facts. Yet, existing methods still face two major challenges: (1) They usually neglect the importance of historical information in KG snapshots related to the queries when encoding the local and global historical information; (2) They exhibit weak anti-noise capabilities, which hinders their performance when the inputs are contaminated with noise.To this end, we propose a novel \blue{Lo}cal-\blue{g}lobal history-aware \blue{C}ontrastive \blue{L}earning model (\blue{LogCL}) for TKG reasoning, which adopts contrastive learning to better guide the fusion of local and global historical information and enhance the ability to resist interference. Specifically, for the first challenge, LogCL proposes an entity-aware attention mechanism applied to the local and global historical facts encoder, which captures the key historical information related to queries. For the latter issue, LogCL designs four historical query contrast patterns, effectively improving the robustness of the model. The experimental results on four benchmark datasets demonstrate that LogCL delivers better and more robust performance than the state-of-the-art baselines.

Despite the prevalence of pretrained language models in natural language understanding tasks, understanding lengthy text such as document is still challenging due to the data sparseness problem. Inspired by that humans develop their ability of understanding lengthy text from reading shorter text, we propose a simple yet effective summarization-based data augmentation, SUMMaug, for document classification. We first obtain easy-to-learn examples for the target document classification task by summarizing the input of the original training examples, while optionally merging the original labels to conform to the summarized input. We then use the generated pseudo examples to perform curriculum learning. Experimental results on two datasets confirmed the advantage of our method compared to existing baseline methods in terms of robustness and accuracy. We release our code and data at //github.com/etsurin/summaug.

Accurate epidemic forecasting is a critical task in controlling disease transmission. Many deep learning-based models focus only on static or dynamic graphs when constructing spatial information, ignoring their relationship. Additionally, these models often rely on recurrent structures, which can lead to error accumulation and computational time consumption. To address the aforementioned problems, we propose a novel model called Backbone-based Dynamic Graph Spatio-Temporal Network (BDGSTN). Intuitively, the continuous and smooth changes in graph structure, make adjacent graph structures share a basic pattern. To capture this property, we use adaptive methods to generate static backbone graphs containing the primary information and temporal models to generate dynamic temporal graphs of epidemic data, fusing them to generate a backbone-based dynamic graph. To overcome potential limitations associated with recurrent structures, we introduce a linear model DLinear to handle temporal dependencies and combine it with dynamic graph convolution for epidemic forecasting. Extensive experiments on two datasets demonstrate that BDGSTN outperforms baseline models and ablation comparison further verifies the effectiveness of model components. Furthermore, we analyze and measure the significance of backbone and temporal graphs by using information metrics from different aspects. Finally, we compare model parameter volume and training time to confirm the superior complexity and efficiency of BDGSTN.

Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.

北京阿比特科技有限公司