亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A dominating set in a directed graph is a set of vertices $S$ such that all the vertices that do not belong to $S$ have an in-neighbour in $S$. A locating set $S$ is a set of vertices such that all the vertices that do not belong to $S$ are characterized uniquely by the in-neighbours they have in $S$, i.e. for every two vertices $u$ and $v$ that are not in $S$, there exists a vertex $s\in S$ that dominates exactly one of them. The size of a smallest set of a directed graph $D$ which is both locating and dominating is denoted by $\gamma^{LD}(D)$. Foucaud, Heydarshahi and Parreau proved that any twin-free digraph $D$ satisfies $\gamma^{LD}(D)\leq \frac{4n} 5 +1$ but conjectured that this bound can be lowered to $\frac{2n} 3$. The conjecture is still open. They also proved that if $D$ is a tournament, i.e. a directed graph where there is one arc between every pair of vertices, then $\gamma^{LD}(D)\leq \lceil \frac{n}{2}\rceil$. The main result of this paper is the generalization of this bound to connected local tournaments, i.e. connected digraphs where the in- and out-neighbourhoods of every vertex induce a tournament. We also prove $\gamma^{LD}(D)\leq \frac{2n} 3$ for all quasi-twin-free digraphs $D$ that admit a supervising vertex (a vertex from which any vertex is reachable). This class of digraphs generalizes twin-free acyclic graphs, the most general class for which this bound was known.

相關內容

We consider the problem of deterministically enumerating all minimum $k$-cut-sets in a given hypergraph for any fixed $k$. The input here is a hypergraph $G = (V, E)$ with non-negative hyperedge costs. A subset $F$ of hyperedges is a $k$-cut-set if the number of connected components in $G - F$ is at least $k$ and it is a minimum $k$-cut-set if it has the least cost among all $k$-cut-sets. For fixed $k$, we call the problem of finding a minimum $k$-cut-set as Hypergraph-$k$-Cut and the problem of enumerating all minimum $k$-cut-sets as Enum-Hypergraph-$k$-Cut. The special cases of Hypergraph-$k$-Cut and Enum-Hypergraph-$k$-Cut restricted to graph inputs are well-known to be solvable in (randomized as well as deterministic) polynomial time. In contrast, it is only recently that polynomial-time algorithms for Hypergraph-$k$-Cut were developed. The randomized polynomial-time algorithm for Hypergraph-$k$-Cut that was designed in 2018 (Chandrasekaran, Xu, and Yu, SODA 2018) showed that the number of minimum $k$-cut-sets in a hypergraph is $O(n^{2k-2})$, where $n$ is the number of vertices in the input hypergraph, and that they can all be enumerated in randomized polynomial time, thus resolving Enum-Hypergraph-$k$-Cut in randomized polynomial time. A deterministic polynomial-time algorithm for Hypergraph-$k$-Cut was subsequently designed in 2020 (Chandrasekaran and Chekuri, FOCS 2020), but it is not guaranteed to enumerate all minimum $k$-cut-sets. In this work, we give the first deterministic polynomial-time algorithm to solve Enum-Hypergraph-$k$-Cut (this is non-trivial even for $k = 2$). Our algorithms are based on new structural results that allow for efficient recovery of all minimum $k$-cut-sets by solving minimum $(S,T)$-terminal cuts. Our techniques give new structural insights even for enumerating all minimum cut-sets (i.e., minimum 2-cut-sets) in a given hypergraph.

Given a graph G and a coloring of its edges, a subgraph of G is called rainbow if its edges have distinct colors. The rainbow girth of an edge coloring of G is the minimum length of a rainbow cycle in G. A generalization of the famous Caccetta-Haggkvist conjecture (CHC), proposed by the first author, is that if G has n vertices, G is n-edge-colored and the size of every color class is k, then the rainbow girth is at most \lceil \frac{n}{k} \rceil. In the only known example showing sharpness of this conjecture, that stems from an example for the sharpness of CHC, the color classes are stars. This suggests that in the antipodal case to stars, namely matchings, the result can be improved. Indeed, we show that the rainbow girth of n matchings of size at least 2 is O(\log n), as compared with the general bound of \lceil \frac{n}{2} \rceil.

We revisit offline reinforcement learning on episodic time-homogeneous Markov Decision Processes (MDP). For tabular MDP with $S$ states and $A$ actions, or linear MDP with anchor points and feature dimension $d$, given the collected $K$ episodes data with minimum visiting probability of (anchor) state-action pairs $d_m$, we obtain nearly horizon $H$-free sample complexity bounds for offline reinforcement learning when the total reward is upper bounded by $1$. Specifically: 1. For offline policy evaluation, we obtain an $\tilde{O}\left(\sqrt{\frac{1}{Kd_m}} \right)$ error bound for the plug-in estimator, which matches the lower bound up to logarithmic factors and does not have additional dependency on $\mathrm{poly}\left(H, S, A, d\right)$ in higher-order term. 2.For offline policy optimization, we obtain an $\tilde{O}\left(\sqrt{\frac{1}{Kd_m}} + \frac{\min(S, d)}{Kd_m}\right)$ sub-optimality gap for the empirical optimal policy, which approaches the lower bound up to logarithmic factors and a high-order term, improving upon the best known result by \cite{cui2020plug} that has additional $\mathrm{poly}\left(H, S, d\right)$ factors in the main term. To the best of our knowledge, these are the \emph{first} set of nearly horizon-free bounds for episodic time-homogeneous offline tabular MDP and linear MDP with anchor points. Central to our analysis is a simple yet effective recursion based method to bound a ``total variance'' term in the offline scenarios, which could be of individual interest.

Paths $P_1,\ldots,P_k$ in a graph $G=(V,E)$ are mutually induced if any two distinct $P_i$ and $P_j$ have neither common vertices nor adjacent vertices (except perhaps their end-vertices). The Induced Disjoint Paths problem is to decide if a graph $G$ with $k$ pairs of specified vertices $(s_i,t_i)$ contains $k$ mutually induced paths $P_i$ such that each $P_i$ connects $s_i$ and $t_i$. This is a classical graph problem that is NP-complete even for $k=2$. We study it for AT-free graphs. Unlike its subclasses of permutation graphs and cocomparability graphs, the class of AT-free graphs has no geometric intersection model. However, by a new, structural analysis of the behaviour of Induced Disjoint Paths for AT-free graphs, we prove that it can be solved in polynomial time for AT-free graphs even when $k$ is part of the input. This is in contrast to the situation for other well-known graph classes, such as planar graphs, claw-free graphs, or more recently, (theta,wheel)-free graphs, for which such a result only holds if $k$ is fixed. As a consequence of our main result, the problem of deciding if a given AT-free graph contains a fixed graph $H$ as an induced topological minor admits a polynomial-time algorithm. In addition, we show that such an algorithm is essentially optimal by proving that the problem is W[1]-hard with parameter $|V_H|$, even on a subclass of AT-free graph, namely cobipartite graphs. We also show that the problems $k$-in-a-Path and $k$-in-a-Tree are polynomial-time solvable on AT-free graphs even if $k$ is part of the input. These problems are to test if a graph has an induced path or induced tree, respectively, spanning $k$ given vertices.

We give lower bounds on the performance of two of the most popular sampling methods in practice, the Metropolis-adjusted Langevin algorithm (MALA) and multi-step Hamiltonian Monte Carlo (HMC) with a leapfrog integrator, when applied to well-conditioned distributions. Our main result is a nearly-tight lower bound of $\widetilde{\Omega}(\kappa d)$ on the mixing time of MALA from an exponentially warm start, matching a line of algorithmic results up to logarithmic factors and answering an open question of Chewi et. al. We also show that a polynomial dependence on dimension is necessary for the relaxation time of HMC under any number of leapfrog steps, and bound the gains achievable by changing the step count. Our HMC analysis draws upon a novel connection between leapfrog integration and Chebyshev polynomials, which may be of independent interest.

A paired dominating set $P$ is a dominating set with the additional property that $P$ has a perfect matching. While the maximum cardainality of a minimal dominating set in a graph $G$ is called the upper domination number of $G$, denoted by $\Gamma(G)$, the maximum cardinality of a minimal paired dominating set in $G$ is called the upper paired domination number of $G$, denoted by $\Gamma_{pr}(G)$. By Henning and Pradhan (2019), we know that $\Gamma_{pr}(G)\leq 2\Gamma(G)$ for any graph $G$ without isolated vertices. We focus on the graphs satisfying the equality $\Gamma_{pr}(G)= 2\Gamma(G)$. We give characterizations for two special graph classes: bipartite and unicyclic graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ by using the results of Ulatowski (2015). Besides, we study the graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ and a restricted girth. In this context, we provide two characterizations: one for graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ and girth at least 6 and the other for $C_3$-free cactus graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$. We also pose the characterization of the general case of $C_3$-free graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ as an open question.

The paper analyses how draw constraints influence the outcome of a knockout tournament. The research question is inspired by the rules of European club football competitions: in order to maintain their international character, the organiser usually imposes an association constraint both in the group stage and the first round of the subsequent knockout phase, that is, teams from the same country cannot be drawn against each other. The effects of similar restrictions are explored in both theoretical and simulation models. Using an association constraint in the first round(s) is verified to increase the likelihood of a same nation matchup to approximately the same extent in each subsequent round. Furthermore, if the favourite teams are concentrated in some associations, they have a higher probability to win the tournament in the presence of association constraints. Our results essentially justify a recent decision of the Union of European Football Associations (UEFA).

We prove that a variant of the classical Sobolev space of first-order dominating mixed smoothness is equivalent (under a certain condition) to the unanchored ANOVA space on $\mathbb{R}^d$, for $d \geq 1$. Both spaces are Hilbert spaces involving weight functions, which determine the behaviour as different variables tend to $\pm \infty$, and weight parameters, which represent the influence of different subsets of variables. The unanchored ANOVA space on $\mathbb{R}^d$ was initially introduced by Nichols & Kuo in 2014 to analyse the error of quasi-Monte Carlo (QMC) approximations for integrals on unbounded domains; whereas the classical Sobolev space of dominating mixed smoothness was used as the setting in a series of papers by Griebel, Kuo & Sloan on the smoothing effect of integration, in an effort to develop a rigorous theory on why QMC methods work so well for certain non-smooth integrands with kinks or jumps coming from option pricing problems. In this same setting, Griewank, Kuo, Le\"ovey & Sloan in 2018 subsequently extended these ideas by developing a practical smoothing by preintegration technique to approximate integrals of such functions with kinks or jumps. We first prove the equivalence in one dimension (itself a non-trivial task), before following a similar, but more complicated, strategy to prove the equivalence for general dimensions. As a consequence of this equivalence, we analyse applying QMC combined with a preintegration step to approximate the fair price of an Asian option, and prove that the error of such an approximation using $N$ points converges at a rate close to $1/N$.

Given a connected graph $G=(V,E)$ and a length function $\ell:E\to {\mathbb R}$ we let $d_{v,w}$ denote the shortest distance between vertex $v$ and vertex $w$. A $t$-spanner is a subset $E'\subseteq E$ such that if $d'_{v,w}$ denotes shortest distances in the subgraph $G'=(V,E')$ then $d'_{v,w}\leq t d_{v,w}$ for all $v,w\in V$. We show that for a large class of graphs with suitable degree and expansion properties with independent exponential mean one edge lengths, there is w.h.p.~a 1-spanner that uses $\approx \frac12n\log n$ edges and that this is best possible. In particular, our result applies to the random graphs $G_{n,p}$ for $np\gg \log n$.

In graph theory, as well as in 3-manifold topology, there exist several width-type parameters to describe how "simple" or "thin" a given graph or 3-manifold is. These parameters, such as pathwidth or treewidth for graphs, or the concept of thin position for 3-manifolds, play an important role when studying algorithmic problems; in particular, there is a variety of problems in computational 3-manifold topology - some of them known to be computationally hard in general - that become solvable in polynomial time as soon as the dual graph of the input triangulation has bounded treewidth. In view of these algorithmic results, it is natural to ask whether every 3-manifold admits a triangulation of bounded treewidth. We show that this is not the case, i.e., that there exists an infinite family of closed 3-manifolds not admitting triangulations of bounded pathwidth or treewidth (the latter implies the former, but we present two separate proofs). We derive these results from work of Agol, of Scharlemann and Thompson, and of Scharlemann, Schultens and Saito by exhibiting explicit connections between the topology of a 3-manifold M on the one hand and width-type parameters of the dual graphs of triangulations of M on the other hand, answering a question that had been raised repeatedly by researchers in computational 3-manifold topology. In particular, we show that if a closed, orientable, irreducible, non-Haken 3-manifold M has a triangulation of treewidth (resp. pathwidth) k then the Heegaard genus of M is at most 18(k+1) (resp. 4(3k+1)).

北京阿比特科技有限公司