As Internet censors rapidly evolve new blocking techniques, circumvention tools must also adapt and roll out new strategies to remain unblocked. But new strategies can be time consuming for circumventors to develop and deploy, and usually an update to one tool often requires significant additional effort to be ported to others. Moreover, distributing the updated application across different platforms poses its own set of challenges. In this paper, we introduce $\textit{WATER}$ (WebAssembly Transport Executables Runtime), a novel design that enables applications to use a WebAssembly-based application-layer to wrap network transports (e.g., TLS). Deploying a new circumvention technique with $\textit{WATER}$ only requires distributing the WebAssembly Transport Module(WATM) binary and any transport-specific configuration, allowing dynamic transport updates without any change to the application itself. WATMs are also designed to be generic such that different applications using $\textit{WATER}$ can use the same WATM to rapidly deploy successful circumvention techniques to their own users, facilitating rapid interoperability between independent circumvention tools.
This paper presents a {\delta}-PI algorithm which is based on damped Newton method for the H{\infty} tracking control problem of unknown continuous-time nonlinear system. A discounted performance function and an augmented system are used to get the tracking Hamilton-Jacobi-Isaac (HJI) equation. Tracking HJI equation is a nonlinear partial differential equation, traditional reinforcement learning methods for solving the tracking HJI equation are mostly based on the Newton method, which usually only satisfies local convergence and needs a good initial guess. Based upon the damped Newton iteration operator equation, a generalized tracking Bellman equation is derived firstly. The {\delta}-PI algorithm can seek the optimal solution of the tracking HJI equation by iteratively solving the generalized tracking Bellman equation. On-policy learning and off-policy learning {\delta}-PI reinforcement learning methods are provided, respectively. Off-policy version {\delta}-PI algorithm is a model-free algorithm which can be performed without making use of a priori knowledge of the system dynamics. NN-based implementation scheme for the off-policy {\delta}-PI algorithms is shown. The suitability of the model-free {\delta}-PI algorithm is illustrated with a nonlinear system simulation.
This paper proposes to develop a new variant of the two-time-scale stochastic approximation to find the roots of two coupled nonlinear operators, assuming only noisy samples of these operators can be observed. Our key idea is to leverage the classic Ruppert-Polyak averaging technique to dynamically estimate the operators through their samples. The estimated values of these averaging steps will then be used in the two-time-scale stochastic approximation updates to find the desired solution. Our main theoretical result is to show that under the strongly monotone condition of the underlying nonlinear operators the mean-squared errors of the iterates generated by the proposed method converge to zero at an optimal rate $\mathcal{O}(1/k)$, where $k$ is the number of iterations. Our result significantly improves the existing result of two-time-scale stochastic approximation, where the best known finite-time convergence rate is $\mathcal{O}(1/k^{2/3})$.
Center-based clustering has attracted significant research interest from both theory and practice. In many practical applications, input data often contain background knowledge that can be used to improve clustering results. In this work, we build on widely adopted $k$-center clustering and model its input background knowledge as must-link (ML) and cannot-link (CL) constraint sets. However, most clustering problems including $k$-center are inherently $\mathcal{NP}$-hard, while the more complex constrained variants are known to suffer severer approximation and computation barriers that significantly limit their applicability. By employing a suite of techniques including reverse dominating sets, linear programming (LP) integral polyhedron, and LP duality, we arrive at the first efficient approximation algorithm for constrained $k$-center with the best possible ratio of 2. We also construct competitive baseline algorithms and empirically evaluate our approximation algorithm against them on a variety of real datasets. The results validate our theoretical findings and demonstrate the great advantages of our algorithm in terms of clustering cost, clustering quality, and running time.
Diffusion models have emerged as powerful generative tools, rivaling GANs in sample quality and mirroring the likelihood scores of autoregressive models. A subset of these models, exemplified by DDIMs, exhibit an inherent asymmetry: they are trained over $T$ steps but only sample from a subset of $T$ during generation. This selective sampling approach, though optimized for speed, inadvertently misses out on vital information from the unsampled steps, leading to potential compromises in sample quality. To address this issue, we present the S$^{2}$-DMs, which is a new training method by using an innovative $L_{skip}$, meticulously designed to reintegrate the information omitted during the selective sampling phase. The benefits of this approach are manifold: it notably enhances sample quality, is exceptionally simple to implement, requires minimal code modifications, and is flexible enough to be compatible with various sampling algorithms. On the CIFAR10 dataset, models trained using our algorithm showed an improvement of 3.27% to 14.06% over models trained with traditional methods across various sampling algorithms (DDIMs, PNDMs, DEIS) and different numbers of sampling steps (10, 20, ..., 1000). On the CELEBA dataset, the improvement ranged from 8.97% to 27.08%. Access to the code and additional resources is provided in the github.
Prior work has explicated the coloniality of artificial intelligence (AI) development and deployment through mechanisms such as extractivism, automation, sociological essentialism, surveillance, and containment. However, that work has not engaged much with alignment: teaching behaviors to a large language model (LLM) in line with desired values, and has not considered a mechanism that arises within that process: moral absolutism -- a part of the coloniality of knowledge. Colonialism has a history of altering the beliefs and values of colonized peoples; in this paper, I argue that this history is recapitulated in current LLM alignment practices and technologies. Furthermore, I suggest that AI alignment be decolonialized using three forms of openness: openness of models, openness to society, and openness to excluded knowledges. This suggested approach to decolonial AI alignment uses ideas from the argumentative moral philosophical tradition of Hinduism, which has been described as an open-source religion. One concept used is vi\'{s}e\d{s}a-dharma, or particular context-specific notions of right and wrong. At the end of the paper, I provide a suggested reference architecture to work toward the proposed framework.
This paper addresses the challenges of real-time, large-scale, and near-optimal multi-agent pathfinding (MAPF) through enhancements to the recently proposed LaCAM* algorithm. LaCAM* is a scalable search-based algorithm that guarantees the eventual finding of optimal solutions for cumulative transition costs. While it has demonstrated remarkable planning success rates, surpassing various state-of-the-art MAPF methods, its initial solution quality is far from optimal, and its convergence speed to the optimum is slow. To overcome these limitations, this paper introduces several improvement techniques, partly drawing inspiration from other MAPF methods. We provide empirical evidence that the fusion of these techniques significantly improves the solution quality of LaCAM*, thus further pushing the boundaries of MAPF algorithms.
We study the edge-coloring problem in simple $n$-vertex $m$-edge graphs with maximum degree $\Delta$. This is one of the most classical and fundamental graph-algorithmic problems. Vizing's celebrated theorem provides $(\Delta+1)$-edge-coloring in $O(m\cdot n)$ deterministic time. This running time was improved to $O\left(m\cdot\min\left\{\Delta\cdot\log n, \sqrt{n}\right\}\right)$. It is also well-known that $3\left\lceil\frac{\Delta}{2}\right\rceil$-edge-coloring can be computed in $O(m\cdot\log\Delta)$ time deterministically. Duan et al. devised a randomized $(1+\varepsilon)\Delta$-edge-coloring algorithm with running time $O\left(m\cdot\frac{\log^6 n}{\varepsilon^2}\right)$. It was however open if there exists a deterministic near-linear time algorithm for this basic problem. We devise a simple deterministic $(1+\varepsilon)\Delta$-edge-coloring algorithm with running time $O\left(m\cdot\frac{\log n}{\varepsilon}\right)$. We also devise a randomized $(1+\varepsilon)\Delta$-edge-coloring algorithm with running time $O(m\cdot(\varepsilon^{-18}+\log(\varepsilon\cdot\Delta)))$. For $\varepsilon\geq\frac{1}{\log^{1/18}\Delta}$, this running time is $O(m\cdot\log\Delta)$.
In data-driven control and machine learning, a common requirement involves breaking down large matrices into smaller, low-rank factors that possess specific levels of sparsity. This paper introduces an innovative solution to the orthogonal nonnegative matrix factorization (ONMF) problem. The objective is to approximate input data by using two low-rank nonnegative matrices, adhering to both orthogonality and $\ell_0$-norm sparsity constraints. the proposed maximum-entropy-principle based framework ensures orthogonality and sparsity of features or the mixing matrix, while maintaining nonnegativity in both. Additionally, the methodology offers a quantitative determination of the ``true'' number of underlying features, a crucial hyperparameter for ONMF. Experimental evaluation on synthetic and a standard datasets highlights the method's superiority in terms of sparsity, orthogonality, and computational speed compared to existing approaches. Notably, the proposed method achieves comparable or improved reconstruction errors in line with the literature.
Click-through rate (CTR) prediction plays a critical role in recommender systems and online advertising. The data used in these applications are multi-field categorical data, where each feature belongs to one field. Field information is proved to be important and there are several works considering fields in their models. In this paper, we proposed a novel approach to model the field information effectively and efficiently. The proposed approach is a direct improvement of FwFM, and is named as Field-matrixed Factorization Machines (FmFM, or $FM^2$). We also proposed a new explanation of FM and FwFM within the FmFM framework, and compared it with the FFM. Besides pruning the cross terms, our model supports field-specific variable dimensions of embedding vectors, which acts as soft pruning. We also proposed an efficient way to minimize the dimension while keeping the model performance. The FmFM model can also be optimized further by caching the intermediate vectors, and it only takes thousands of floating-point operations (FLOPs) to make a prediction. Our experiment results show that it can out-perform the FFM, which is more complex. The FmFM model's performance is also comparable to DNN models which require much more FLOPs in runtime.
Graph convolution networks (GCN) are increasingly popular in many applications, yet remain notoriously hard to train over large graph datasets. They need to compute node representations recursively from their neighbors. Current GCN training algorithms suffer from either high computational costs that grow exponentially with the number of layers, or high memory usage for loading the entire graph and node embeddings. In this paper, we propose a novel efficient layer-wise training framework for GCN (L-GCN), that disentangles feature aggregation and feature transformation during training, hence greatly reducing time and memory complexities. We present theoretical analysis for L-GCN under the graph isomorphism framework, that L-GCN leads to as powerful GCNs as the more costly conventional training algorithm does, under mild conditions. We further propose L^2-GCN, which learns a controller for each layer that can automatically adjust the training epochs per layer in L-GCN. Experiments show that L-GCN is faster than state-of-the-arts by at least an order of magnitude, with a consistent of memory usage not dependent on dataset size, while maintaining comparable prediction performance. With the learned controller, L^2-GCN can further cut the training time in half. Our codes are available at //github.com/Shen-Lab/L2-GCN.