In this paper we generalize the polynomial time integration framework to additively partitioned initial value problems. The framework we present is general and enables the construction of many new families of additive integrators with arbitrary order-of-accuracy and varying degree of implicitness. In this first work, we focus on a new class of implicit-explicit polynomial block methods that are based on fully-implicit Runge-Kutta methods with Radau nodes. We show that the new integrators have improved stability compared to existing IMEX Runge-Kutta methods, while also being more computationally efficient due to recent developments in preconditioning techniques for solving the associated systems of nonlinear equations. For PDEs on periodic domains where the implicit component is trivial to invert, we will show how parallelization of the right-hand-side evaluations can be exploited to obtain significant speedup compared to existing serial IMEX Runge-Kutta methods. For parallel (in space) finite-element discretizations, the new methods obtain accuracy several orders of magnitude lower than existing IMEX Runge-Kutta methods, and/or obtain a given accuracy as much as 16 times faster in terms of computational runtime.
In this work a non-conservative balance law formulation is considered that encompasses the rotating, compressible Euler equations for dry atmospheric flows. We develop a semi-discretely entropy stable discontinuous Galerkin method on curvilinear meshes using a generalization of flux differencing for numerical fluxes in fluctuation form. The method uses the skew-hybridized formulation of the element operators to ensure that, even in the presence of under-integration on curvilinear meshes, the resulting discretization is entropy stable. Several atmospheric flow test cases in one, two, and three dimensions confirm the theoretical entropy stability results as well as show the high-order accuracy and robustness of the method.
In image processing, the amount of data to be processed grows rapidly, in particular when imaging methods yield images of more than two dimensions or time series of images. Thus, efficient processing is a challenge, as data sizes may push even supercomputers to their limits. Quantum image processing promises to encode images with logarithmically less qubits than classical pixels in the image. In theory, this is a huge progress, but so far not many experiments have been conducted in practice, in particular on real backends. Often, the precise conversion of classical data to quantum states, the exact implementation, and the interpretation of the measurements in the classical context are challenging. We investigate these practical questions in this paper. In particular, we study the feasibility of the Flexible Representation of Quantum Images (FRQI). Furthermore, we check experimentally what is the limit in the current noisy intermediate-scale quantum era, i.e. up to which image size an image can be encoded, both on simulators and on real backends. Finally, we propose a method for simplifying the circuits needed for the FRQI. With our alteration, the number of gates needed, especially of the error-prone controlled-NOT gates, can be reduced. As a consequence, the size of manageable images increases.
Modeling univariate block maxima by the generalized extreme value distribution constitutes one of the most widely applied approaches in extreme value statistics. It has recently been found that, for an underlying stationary time series, respective estimators may be improved by calculating block maxima in an overlapping way. A proof of concept is provided that the latter finding also holds in situations that involve certain piecewise stationarities. A weak convergence result for an empirical process of central interest is provided, and, as a case-in-point, further details are worked out explicitly for the probability weighted moment estimator. Irrespective of the serial dependence, the estimation variance is shown to be smaller for the new estimator, while the bias was found to be the same or vary comparably little in extensive simulation experiments. The results are illustrated by Monte Carlo simulation experiments and are applied to a common situation involving temperature extremes in a changing climate.
We present monostatic sampling methods for limited-aperture scattering problems in two dimensions. The direct sampling method (DSM) is well known to provide a robust, stable, and fast numerical scheme for imaging inhomogeneities from multistatic measurements even with only one or two incident fields. However, in practical applications, monostatic measurements in limited-aperture configuration are frequently encountered. A monostatic sampling method (MSM) was studied in full-aperture configuration in recent literature. In this paper, we develop MSM in limited-aperture configuration and derive an asymptotic formula of the corresponding indicator function. Based on the asymptotic formula, we then analyze the imaging performance of the proposed method depending on the range of measurement directions and the geometric, material properties of inhomogeneities. Furthermore, we propose a modified numerical scheme with multi-frequency measurements that improve imaging performance, especially for small anomalies. Numerical simulations are presented to validate the analytical results.
In this paper, we present a quadratic auxiliary variable approach to develop a new class of energy-preserving Runge-Kutta methods for the Korteweg-de Vries equation. The quadratic auxiliary variable approach is first proposed to reformulate the original model into an equivalent system, which transforms the energy conservation law of the Korteweg-de Vries equation into two quadratic invariants of the reformulated system. Then the symplectic Runge-Kutta methods are directly employed for the reformulated model to arrive at a new kind of time semi-discrete schemes for the original problem. Under the consistent initial condition, the proposed methods are rigorously proved to maintain the original energy conservation law of the Korteweg-de Vries equation. In addition, the Fourier pseudo-spectral method is used for spatial discretization, resulting in fully discrete energy-preserving schemes. To implement the proposed methods effectively, we present a very efficient iterative technique, which not only greatly saves the calculation cost, but also achieves the purpose of practically preserving structure. Ample numerical results are addressed to confirm the expected order of accuracy, conservative property and efficiency of the proposed algorithms.
Copulas are a powerful tool for modeling multivariate distributions as they allow to separately estimate the univariate marginal distributions and the joint dependency structure. However, known parametric copulas offer limited flexibility especially in high dimensions, while commonly used non-parametric methods suffer from the curse of dimensionality. A popular remedy is to construct a tree-based hierarchy of conditional bivariate copulas. In this paper, we propose a flexible, yet conceptually simple alternative based on implicit generative neural networks. The key challenge is to ensure marginal uniformity of the estimated copula distribution. We achieve this by learning a multivariate latent distribution with unspecified marginals but the desired dependency structure. By applying the probability integral transform, we can then obtain samples from the high-dimensional copula distribution without relying on parametric assumptions or the need to find a suitable tree structure. Experiments on synthetic and real data from finance, physics, and image generation demonstrate the performance of this approach.
We study approximation methods for a large class of mixed models with a probit link function that includes mixed versions of the binomial model, the multinomial model, and generalized survival models. The class of models is special because the marginal likelihood can be expressed as Gaussian weighted integrals or as multivariate Gaussian cumulative density functions. The latter approach is unique to the probit link function models and has been proposed for parameter estimation in complex, mixed effects models. However, it has not been investigated in which scenarios either form is preferable. Our simulations and data example show that neither form is preferable in general and give guidance on when to approximate the cumulative density functions and when to approximate the Gaussian weighted integrals and, in the case of the latter, which general purpose method to use among a large list of methods.
In this paper we are concerned with energy-conserving methods for Poisson problems, which are effectively solved by defining a suitable generalization of HBVMs, a class of energy-conserving methods for Hamiltonian problems. The actual implementation of the methods is fully discussed, with a particular emphasis on the conservation of Casimirs. Some numerical tests are reported, in order to assess the theoretical findings.
Paths $P_1,\ldots,P_k$ in a graph $G=(V,E)$ are mutually induced if any two distinct $P_i$ and $P_j$ have neither common vertices nor adjacent vertices (except perhaps their end-vertices). The Induced Disjoint Paths problem is to decide if a graph $G$ with $k$ pairs of specified vertices $(s_i,t_i)$ contains $k$ mutually induced paths $P_i$ such that each $P_i$ connects $s_i$ and $t_i$. This is a classical graph problem that is NP-complete even for $k=2$. We study it for AT-free graphs. Unlike its subclasses of permutation graphs and cocomparability graphs, the class of AT-free graphs has no geometric intersection model. However, by a new, structural analysis of the behaviour of Induced Disjoint Paths for AT-free graphs, we prove that it can be solved in polynomial time for AT-free graphs even when $k$ is part of the input. This is in contrast to the situation for other well-known graph classes, such as planar graphs, claw-free graphs, or more recently, (theta,wheel)-free graphs, for which such a result only holds if $k$ is fixed. As a consequence of our main result, the problem of deciding if a given AT-free graph contains a fixed graph $H$ as an induced topological minor admits a polynomial-time algorithm. In addition, we show that such an algorithm is essentially optimal by proving that the problem is W[1]-hard with parameter $|V_H|$, even on a subclass of AT-free graph, namely cobipartite graphs. We also show that the problems $k$-in-a-Path and $k$-in-a-Tree are polynomial-time solvable on AT-free graphs even if $k$ is part of the input. These problems are to test if a graph has an induced path or induced tree, respectively, spanning $k$ given vertices.
In graph theory, as well as in 3-manifold topology, there exist several width-type parameters to describe how "simple" or "thin" a given graph or 3-manifold is. These parameters, such as pathwidth or treewidth for graphs, or the concept of thin position for 3-manifolds, play an important role when studying algorithmic problems; in particular, there is a variety of problems in computational 3-manifold topology - some of them known to be computationally hard in general - that become solvable in polynomial time as soon as the dual graph of the input triangulation has bounded treewidth. In view of these algorithmic results, it is natural to ask whether every 3-manifold admits a triangulation of bounded treewidth. We show that this is not the case, i.e., that there exists an infinite family of closed 3-manifolds not admitting triangulations of bounded pathwidth or treewidth (the latter implies the former, but we present two separate proofs). We derive these results from work of Agol, of Scharlemann and Thompson, and of Scharlemann, Schultens and Saito by exhibiting explicit connections between the topology of a 3-manifold M on the one hand and width-type parameters of the dual graphs of triangulations of M on the other hand, answering a question that had been raised repeatedly by researchers in computational 3-manifold topology. In particular, we show that if a closed, orientable, irreducible, non-Haken 3-manifold M has a triangulation of treewidth (resp. pathwidth) k then the Heegaard genus of M is at most 18(k+1) (resp. 4(3k+1)).